Nagoya Mathematical Journal

A construction of quintic rings

Anthony C. Kable and Akihiko Yukie

Full-text: Open access

Abstract

We construct a discriminant-preserving map from the set of orbits in the space of quadruples of quinary alternating forms over the integers to the set of isomorphism classes of quintic rings. This map may be regarded as an analogue of the famous map from the set of equivalence classes of integral binary cubic forms to the set of isomorphism classes of cubic rings and may be expected to have similar applications. We show that the ring of integers of every quintic number field lies in the image of the map. These results have been used to establish an upper bound on the number of quintic number fields with bounded discriminant.

Article information

Source
Nagoya Math. J., Volume 173 (2004), 163-203.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631987

Mathematical Reviews number (MathSciNet)
MR2041760

Zentralblatt MATH identifier
1068.11068

Subjects
Primary: 11R21: Other number fields
Secondary: 11E76: Forms of degree higher than two 11R27: Units and factorization 11S90: Prehomogeneous vector spaces

Citation

Kable, Anthony C.; Yukie, Akihiko. A construction of quintic rings. Nagoya Math. J. 173 (2004), 163--203. https://projecteuclid.org/euclid.nmj/1114631987


Export citation

References

  • K. Amano, M. Fujigami and T. Kogiso, Construction of Irreducible Relative Invariant of the Prehomogeneous Vector Space $(SL_5 \times GL_4, \La^2(\mathbbC^5) \otimes \mathbbC^4)$ , Linear Algebra Appl., 355 (2002), 215–222.
  • M. Bhargava, Higher Composition Laws, Ph.D. Thesis, Princeton University (2001).
  • M. Bhargava, Gauss Composition and Generalizations , 1–8, Algorithmic Number Theory: 5th International Symposium (C. Fieker and D. R. Kohel, eds.), Springer Lecture Notes in Computer Science, vol. 2369, Springer, New York (2002).
  • A. Cayley, On the theory of linear transformations , 80–94, The Collected Mathematical Papers of Arthur Cayley, vol. 1, Cambridge University Press, Cambridge (1889).
  • H. Cohen, F. Diaz y Diaz and M. Olivier, Counting discriminants of number fields of degree up to four , 269–283, Algorithmic Number Theory (Leiden 2000), Lecture Notes in Computer Science, vol. 1838, Springer, Berlin (2000).
  • C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Integral Orders, Vol. 1, Wiley Classics Library, John Wiley & Sons, New York (1990).
  • H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields , Bull. Lond. Math. Soc., 1 (1969), 345–348.
  • H. Davenport and H. Heilbronn, On the density of the discriminants of cubic fields. II , Proc. Roy. Soc. London Ser. A. 322 (1971), 405–420.
  • B. N. Delone and D. K. Fadeev, Theory of Irrationalities of the Third Degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence (1964).
  • J. Dieudonné, Sur la reduction canonique des couples de matrices , Bull. Soc. math. France, 74 (1946), 130–146.
  • I. M. Gel'fand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Mathematics: Theory and Applications, Birkhäuser, Boston (1994).
  • W. T. Gan, B. Gross and G. Savin, Fourier Coefficients of Modular Forms on $\mbox\upshape G_2$ , preprint (2001).
  • G. B. Gurevich, Foundations of the Theory of Algebraic Invariants, translated by J. R. M. Radok and A. J. M. Spencer, P. Noordhoff, Groningen (1964).
  • A. Gyoja and Y. Omoda, Characteristic cycles of certain character sheaves , Indag. Math. (N.S.), 12 (2001), 329–335.
  • A. C. Kable, Classes of integral $3$-tensors on $2$-space , Mathematika, 47 (2000), 205–217.
  • A. C. Kable, The concomitants of a prehomogeneous vector space , to appear in J. Algebra.
  • A. C. Kable and A. Yukie, Prehomogeneous vector spaces and field extensions II , Invent. Math., 130 (1997), 315–344.
  • A. C. Kable and A. Yukie, On the Number of Quintic Fields , preprint (2002).
  • N. Kawanaka, Generalized Gel'fand-Graev representations of exceptional simple algebraic groups over a finite field I , Invent. math., 84 (1986), 575–616.
  • T. Kimura, F. Sato and X.-W. Zhu, On the poles of $p$-adic complex powers and the $b$-functions of prehomogeneous vector spaces , Amer. J. Math., 112 (1990), 423–437.
  • T. Kimura and M. Sato, A classification of irreducible prehomogeneous vector spaces and their relative invariants , Nagoya Math. J., 65 (1977), 1–155.
  • F. Knop and G. Menzel, Duale Varietäten von Fahnenvarietäten , Comment. Math. Helv., 62 (1987), 38–61.
  • G. Lusztig, Introduction to character sheaves , 165–179, The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math., vol. 47, part 1, Amer. Math. Soc., Providence (1987).
  • M. Muro, M. Sato and T. Shintani, Theory of prehomogeneous vector spaces (algebraic part) – the English translation of Sato's lecture from Shintani's note , Nagoya Math. J., 120 (1990), 1–34.
  • W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN, Warsaw (1974).
  • I. Ozeki, On the microlocal structure of the regular prehomogeneous vector space associated with $\SL(5) \times \GL(4)$ I , Proc. Japan Acad. 55, Ser. A (1979), 37–40.
  • I. Ozeki, On the microlocal structure of the regular prehomogeneous vector space associated with $\SL(5) \times \GL(4)$ I , Publ. Res. Inst. Math. Sci., 26 , no. 3 (1990), 539–584.
  • R. Scharlau, Paare alternierender Formen , Math. Z., 147 (1976), 13–19.
  • W. Schmidt, Number fields of given degree and bounded discriminant , Columbia University Number Theory Seminar (New York 1992), Astérisque, 228 (1995), 189–195.
  • Waterloo Maple Inc., “Maple 7”, copyright 2001.
  • D. Witte, A. Yukie and R. Zierau, Prehomogeneous vector spaces and ergodic theory II , Trans. Amer. Math. Soc., 352 (2000), 1687–1708.
  • D. Wright and A. Yukie, Prehomogeneous vector spaces and field extensions , Invent. math., 110 (1992), 283–314.
  • A. Yukie, Density theorems related to prehomogeneous vector spaces , Automorphic forms, automorphic representations and automorphic L-functions over algebraic groups, Sūrikaisekikenkyūsho Kōkyūroku, 1173 (2000), 171–183.
  • A. Yukie, Shintani Zeta Functions, Lond. Math. Soc. Lecture Notes, Vol. 183, Cambridge UP, Cambridge (1993).