Nagoya Mathematical Journal

An application of Iwasawa theory to constructing fields {${\bf Q}(\zeta\sb n+\zeta\sb n\sp {-1})$} which have class group with large {$p$}-rank

Manabu Ozaki

Full-text: Open access

Abstract

Let $p$ be an odd prime number. By using Iwasawa theory, we shall construct cyclotomic fields whose maximal real subfields have class group with arbitrarily large $p$-rank and conductor with only four prime factors.

Article information

Source
Nagoya Math. J., Volume 169 (2003), 179-190.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631813

Mathematical Reviews number (MathSciNet)
MR1962527

Zentralblatt MATH identifier
1045.11076

Subjects
Primary: 11R23: Iwasawa theory
Secondary: 11R18: Cyclotomic extensions 11R29: Class numbers, class groups, discriminants

Citation

Ozaki, Manabu. An application of Iwasawa theory to constructing fields {${\bf Q}(\zeta\sb n+\zeta\sb n\sp {-1})$} which have class group with large {$p$}-rank. Nagoya Math. J. 169 (2003), 179--190. https://projecteuclid.org/euclid.nmj/1114631813


Export citation

References

  • G. Cornell, Exponential growth of the $l$-rank of the class group of the maximal real subfield of cyclotomic fields , Bull. Amer. Math. Soc., 8 (1983), 55--58.
  • G. Cornell and M. Rosen, The $l$-rank of the real class group of cyclotomic fields , Compositio Math., 53 (1984), 133--141.
  • R. Greenberg, On the structure of certain Galois groups , Invent. Math., 47 (1978), 85--99.
  • K. Iwasawa, On $\boldZ_l$-extensions of algebraic number fields , Ann. of Math., 98 (1973), 246--326.
  • J.C. Lagarias and A.M. Odlyzko, Effective version of the Chebotarev density theorem , Algebraic number fields, (Durham Symposium, 1975; ed. by A.Fröhlich), Academic Press, London, 1977, 409--464.
  • F. Lemmermeyer, Ideal class groups of cyclotomic number fields II , Acta. Arith., 84 (1998), 59--70.
  • M. Ozaki, The class group of $\Z_p$-extensions over totally real number fields , Tôhoku Math. J., 49 (1997), 431-435.
  • L.C. Washington, Introduction to Cyclotomic Fields (2nd. edition), Graduate Texts in Math. 83, Springer-Verlag, New York (1997).
  • A. Wiles, The Iwasawa conjecture for totally real fields , Ann. of Math., 131 (1990), 493--540.