Nagoya Mathematical Journal

Glauber dynamics for fermion point processes

Tomoyuki Shirai and Hyun Jae Yoo

Full-text: Open access

Abstract

We construct a Glauber dynamics on $\{ 0, 1 \}^{\mathcal{R}}$, $\mathcal{R}$ a discrete space, with infinite range flip rates, for which a fermion point process is reversible. We also discuss the ergodicity of the corresponding Markov process and the log-Sobolev inequality.

Article information

Source
Nagoya Math. J. Volume 168 (2002), 139-166.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631786

Mathematical Reviews number (MathSciNet)
MR1942400

Zentralblatt MATH identifier
1029.82025

Subjects
Primary: 82C22: Interacting particle systems [See also 60K35]
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Citation

Shirai, Tomoyuki; Yoo, Hyun Jae. Glauber dynamics for fermion point processes. Nagoya Math. J. 168 (2002), 139--166. https://projecteuclid.org/euclid.nmj/1114631786.


Export citation

References

  • M. Aizenman and R. Holley, Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Sholosman regime , Percolation theory and ergodic theory of infinite particle systems (H. Kesten, ed.), IMS Volume in Math. and Appl. 8, Springer, Berlin-Heidelberg-New York (1987), 1–11.
  • H. Araki and T. Matsui, Ground states of the $XY$-model , Commun. Math. Phys., 101 (1985), 213–245.
  • A. Borodin, A. Okounkov and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups , J. Amer. Math. Soc., 13 , no. 3 (2000), 481–515.
  • A. Borodin and G. Olshanski, Point processes and the infinite symmetric group part III : fermion point processes , math. RT/9804088 (1998).
  • J. D. Deuschel and D. W. Stroock, Large deviations, Academic Press, Boston (1989).
  • H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics 9, Walter de Gruyter, Berlin-New York (1988).
  • L. Gross, Logarithmic Sobolev inequalities , Amer. J. Math., 97 (1976), 1061–1083.
  • A. Guionnet and B. Zegarlinski, Lectures on logarithmic Sobolev inequalities , preprint (2000).
  • H. Föllmer, A covariance estimate for Gibbs measures , J. Funct. Anal., 46 (1982), 387–395.
  • M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin-New York (1994).
  • T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin-Heidelberg-New York (1966).
  • E. Laroche, Hypercontractivité pour des systemes de spins de porté e infinie , Prob. Th. Rel. Fields, 101 (1995), 89–132.
  • T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York (1985).
  • S. L. Lu and H. T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics , Commun. Math. Phys., 156 (1993), 399–433.
  • O. Macchi, The coincidence approach to stochastic point processes , Adv. Appl. Prob., 7 (1975), 83–122.
  • O. Macchi, The fermion process – a model of stochastic point process with repulsive points , Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974), Vol. A (1977), 391–398.
  • T. Matsui, Explicit formulas for correlation functions of ground states of the $1$ dimensional $XY$-model , Ann. Inst. Henri Poincaré, 45 (1) (1986), 49–59.
  • F. Martinelli, Lectures on Glauber dynamics for discrete spin models , Lecture Note in Math. 1717 (1997), 93–191.
  • Z. M. Ma and M. Röckner, Introduction to the Theory of (non-symmetric) Dirichlet forms, Springer-Verlag, Berlin-Heidelberg-New York (1992).
  • H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions , Commun. Math. Phys., 176 (1996), 117–131.
  • T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I : Fermion, Poisson and Boson point processes , preprint RIMS-1368 available via http://www.kurims.kyoto-u.ac.jp/$^\scriptscriptstyle \sim$ kenkyubu/paper/all.html.
  • T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants II : Fermion shifts and their ergodic and Gibbs properties , to appear in Annals. of prob.
  • B. Simon, A remark on Nelson's best hypercontractive estimates , Proc. Amer. Math. Soc., 55 (1975), 376–378.
  • A. Soshnikov, Determinantal random point fields , Russian Math. Surveys, 55 (2000), 923–975.
  • H. Spohn, Interacting Brownian Particles : A Study of Dyson's Model , Hydrodynamic Behavior and Interacting Particle Systems (G. Papanicalaou, ed.), IMA Vol. Math. Appl. 9, Springer, New York (1987), 151–179.
  • D. W. Stroock and B. Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on a lattice , Commun. Math. Phys., 149 (1992), 175–193.
  • D. W. Stroock and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and Dobrushin-Shlosman mixing condition , Commun. Math. Phys., 144 (1992), 303–323.