Nagoya Mathematical Journal

Lower bounds for fundamental units of real quadratic fields

Koshi Tomita and Kouji Yamamuro

Full-text: Open access

Abstract

Let $d$ be a square-free positive integer and $l(d)$ be the period length of the simple continued fraction expansion of $\omega_d$, where $\omega_d $ is integral basis of $\mathbb{Z}[\sqrt{d}]$. Let $\varepsilon_d = (t_d+u_d\sqrt{d})/2$ $(>1)$ be the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$. In this paper new lower bounds for $\varepsilon_d$, $t_d$, and $u_d$ are described in terms of $l(d)$. The lower bounds of $\varepsilon_d$ are sharper than the known bounds and those of $t_d$ and $u_d$ have been yet unknown. In order to show the strength of the method of the proof, some interesting examples of $d$ are given for which $\varepsilon_d$ and Yokoi's $d$-invariants are determined explicitly in relation to continued fractions of the form $[a_0, \overline{1, \dots ,1, a_{l(d)}}\mkern1.5mu]$.

Article information

Source
Nagoya Math. J., Volume 166 (2002), 29-37.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631731

Mathematical Reviews number (MathSciNet)
MR1908571

Zentralblatt MATH identifier
1035.11055

Subjects
Primary: 11R27: Units and factorization
Secondary: 11R11: Quadratic extensions

Citation

Tomita, Koshi; Yamamuro, Kouji. Lower bounds for fundamental units of real quadratic fields. Nagoya Math. J. 166 (2002), 29--37. https://projecteuclid.org/euclid.nmj/1114631731


Export citation

References

  • R. A. Mollin, Quadratics, CRC Press, Boca Rato, FL. (1996).
  • R. Sasaki, A characterization of certain real quadratic fields , Proc. Japan Acad. (1986, 62{, Ser. A} , no. 3), 97–100.
  • K. Tomita, Explicit representation of fundamental units of some quadratic fields , Proc. Japan Acad. (1995, 71{, Ser. A} , no. 2), 41–43.
  • K. S. Williams and N. Buck, Comparison of the lengths of the continued fractions of $\sqrt{D}$ and $\frac{1}{2}(1+\sqrt{D})$ , Proc. Amer. Math. Soc. (1994, 120 , no. 4), 995–1002.
  • H. Yokoi, The fundamental unit and class number one problem of real quadratic fields with prime discriminant , Nagoya Math. J. (1990, 120 ), 51–59.
  • H. Yokoi, a note on class number one problem for real quadratic fields , Proc. Japan Acad. (1993, 69{, Ser. A} ), 22–26.
  • H. Yokoi, The fundamental unit and bounds for class numbers of real quadratic fields , Nagoya Math. J. (1991, 124 ), 181–197.
  • H. Yokoi, New invariants and class number problem in real quadratic fields , Nagoya Math. J. (1993, 132 ), 175–197.