Nagoya Mathematical Journal
- Nagoya Math. J.
- Volume 163 (2001), 145-165.
Morse inequalities for covering manifolds
Radu Todor, Ionuţ Chiose, and George Marinescu
Full-text: Open access
Abstract
We study the existence of $L^2$ holomorphic sections of invariant line bundles over Galois coverings. We show that the von Neumann dimension of the space of $L^2$ holomorphic sections is bounded below under weak curvature conditions. We also give criteria for a compact complex space with isolated singularities and some related strongly pseudoconcave manifolds to be Moishezon. As applications we prove the stability of the previous Moishezon pseudoconcave manifolds under perturbation of complex structures as well as weak Lefschetz theorems.
Article information
Source
Nagoya Math. J., Volume 163 (2001), 145-165.
Dates
First available in Project Euclid: 27 April 2005
Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631624
Mathematical Reviews number (MathSciNet)
MR1855193
Zentralblatt MATH identifier
1018.32022
Subjects
Primary: 32L10: Sheaves and cohomology of sections of holomorphic vector bundles, general results [See also 14F05, 18F20, 55N30]
Secondary: 32F10: $q$-convexity, $q$-concavity 32Q55: Topological aspects of complex manifolds 58J37: Perturbations; asymptotics
Citation
Todor, Radu; Chiose, Ionuţ; Marinescu, George. Morse inequalities for covering manifolds. Nagoya Math. J. 163 (2001), 145--165. https://projecteuclid.org/euclid.nmj/1114631624
References
- A. Andreotti, Théorèmes de dépendance algébrique sur les espaces,complexes pseudo-concaves , Bull. Soc. Math. France, 91 (1963), 1–38.Mathematical Reviews (MathSciNet): MR152674
- A. Andreotti, H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes , Bull. Soc. Math. France, 90 (1962), 193–259.Mathematical Reviews (MathSciNet): MR150342
- A. Andreotti, E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds , Inst. Hautes Etudes Sci. Publ. Math., 25 (1965), 81–130.Mathematical Reviews (MathSciNet): MR175148
- A. Andreotti, G. Tomassini, Some remarks on pseudoconcave manifolds , Essays in Topology and Related Topics, dedicated to G. de Rham, Springer (1970), 84–105, Berlin–Heidelberg–New York (R. Narasimhan, A. Haefliger, eds.).
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras , Astérisque (1976, 32–33 ), 43–72.
- T. Bouche, Inégalités de Morse pour la $d''$–cohomologie sur une variété non– compacte , Ann. Sci. Ecole Norm. Sup., 22 (1989), 501–513.Mathematical Reviews (MathSciNet): MR1026747
- C. Bănică, O. Stănăşilă, Algebraic methods in the global theory of complex spaces, Wiley, New York(1976).Mathematical Reviews (MathSciNet): MR463470
- H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators with applications to quantum physics, Springer–Verlag(1987, Texts and Monographs in Physics).Mathematical Reviews (MathSciNet): MR883643
- J. P. Demailly, Champs magnétiques et inégalités de Morse pour la $d''$–cohomologie , Ann. Inst. Fourier, 35 (1985), 189–229. \comment{ Mathematical Reviews (MathSciNet): MR812325
- J. P. Demailly, Regularization of closed positive currents and intersection theory , J. Alg. Geom., 1(1992), 361–409.Mathematical Reviews (MathSciNet): MR1158622
- H. Grauert, O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen , Invent. Math., 11 (1970), 263–292. }
- Ph. A. Griffiths, The extension problem in complex analysis; embedding with positive normal bundle , Amer. J. Math., 88 (1966), 366–446.Mathematical Reviews (MathSciNet): MR206980
- A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North–Holland, Amsterdam(1968). Mathematical Reviews (MathSciNet): MR476737
- M. Gromov, M. G. Henkin, M. Shubin, $L^2$ holomorphic functions on pseudo–convex coverings , GAFA, 8 (1998), 552–585.Mathematical Reviews (MathSciNet): MR1631263
Digital Object Identifier: doi:10.1007/s000390050066
Zentralblatt MATH: 0926.32011 - G.Henniart, Les inégalités de Morse (d'après Witten) , Astérisque, no. 121/122, 1983/84 , 43–61(1985).Mathematical Reviews (MathSciNet): MR768953
- J. Kollár, Shafarevich maps and automorphic forms, Princeton University Press, Princeton, NJ (1995).Mathematical Reviews (MathSciNet): MR1341589
- L. Lempert, Embeddings of three dimensional Cauchy–Riemann manifolds , Math. Ann., 300, 1-15(1994).
- G. Marinescu, Asymptotic Morse Inequalities for Pseudoconcave Manifolds , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996, no. 1), 27–55. Mathematical Reviews (MathSciNet): MR1401416
- A. Nadel, H. Tsuji, Compactification of complete Kähler manifolds of negative Ricci curvature, J. Differential Geom., 28 (1988, no. 3), 503–512. Mathematical Reviews (MathSciNet): MR965227
- A. Nadel, On complex manifolds which can be compactified by adding finitely many points , Invent. Math., 101 (1990, no. 1), 173–189. \comment{Mathematical Reviews (MathSciNet): MR1055714
Digital Object Identifier: doi:10.1007/BF01231500
Zentralblatt MATH: 0712.32019 - T. Napier, Convexity properties of coverings of smooth projective varieties, Math. Ann., 286 (1990), 433–479.. }Mathematical Reviews (MathSciNet): MR1032941
Digital Object Identifier: doi:10.1007/BF01453583
Zentralblatt MATH: 0733.32008 - T. Napier, M. Ramachandran, The $L^2$–method, weak Lefschetz theorems and the topology of Kähler manifolds , JAMS, 11, no. 2, 375–396. Mathematical Reviews (MathSciNet): MR1477601
Digital Object Identifier: doi:10.1090/S0894-0347-98-00257-4
JSTOR: links.jstor.org - M.V. Nori, Zariski's conjecture and related problems , Ann. Sci. Ec. Norm. Sup., 16(1983), 305–344. \comment{Mathematical Reviews (MathSciNet): MR732347
- T. Ohsawa, Hodge spectral sequence and symmetry on compact Kähler spaces, Publ. Res. Inst. Math. Sci., 23(1987), 613–625. }Mathematical Reviews (MathSciNet): MR918517
- T. Ohsawa, Isomorphism theorems for cohomology groups of weakly $1$–complete manifolds , Publ. Res. Inst. Math. Sci., 18(1982), 191–232.Mathematical Reviews (MathSciNet): MR660827
- H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary , Proceedings of the Conference on Complex Analysis (Minneapolis 1964), Springer–Verlag, Berlin (1965), 242–256.
- L. Saper, $L^2$-cohomology and intersection homology of certain algebraic varieties with isolated singularities , Invent. Math., 82 (1985, no. 2), 207–255.Mathematical Reviews (MathSciNet): MR809713
Digital Object Identifier: doi:10.1007/BF01388801
Zentralblatt MATH: 0611.14018 - Y. T. Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds , J. Diff. Geom., 19 , 431–452 (1984). \comment{Mathematical Reviews (MathSciNet): MR755233
- Y. T. Siu, Some recent results in complex manifold theory related to vanishing theorems for the semipositive case , Lecture Notes in Math., 169–192, 1111 , Springer, Berlin-New York (1985, Arbeittagung Bonn 1984). }
- Y. T. Siu, S. T. Yau, Compactification of negatively curved complete Kähler manifolds of finite volume , Ann. Math. Stud., 102, 363–380(1982).Mathematical Reviews (MathSciNet): MR645748
- M. Shubin, Semiclassical asymptotics on covering manifolds and Morse inequalities , GAFA, 6 (1996, no. 2), 370–409.Mathematical Reviews (MathSciNet): MR1384616
Digital Object Identifier: doi:10.1007/BF02247891
Zentralblatt MATH: 0861.58039 - S. Takayama, A differential geometric property of big line bundles , Tôhoku Math. J. (2), 46 (1994, no. 2), 281–291. \comment{Mathematical Reviews (MathSciNet): MR1272883
- S. Zucker, Hodge theory with degenerating coefficients: $L^2$ cohomology in the Poincaré metric , Ann. Math., 109, 415–476(1979). }Mathematical Reviews (MathSciNet): MR534758
Digital Object Identifier: doi:10.2307/1971221
JSTOR: links.jstor.org - E. Witten, Supersymmetry and Morse theory , J. Diff. Geom., 17, 661–692 (1982).Mathematical Reviews (MathSciNet): MR683171

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Topology of holomorphic Lefschetz pencils on the four-torus
Hamada, Noriyuki and Hayano, Kenta, Algebraic & Geometric Topology, 2018 - Holomorphic Line Bunbles on the loop space of the Riemann
Sphere
Zhang, Ning, Journal of Differential Geometry, 2003 - Kähler manifolds of semi-negative holomorphic sectional curvature
Heier, Gordon, Lu, Steven S. Y., and Wong, Bun, Journal of Differential Geometry, 2016
- Topology of holomorphic Lefschetz pencils on the four-torus
Hamada, Noriyuki and Hayano, Kenta, Algebraic & Geometric Topology, 2018 - Holomorphic Line Bunbles on the loop space of the Riemann
Sphere
Zhang, Ning, Journal of Differential Geometry, 2003 - Kähler manifolds of semi-negative holomorphic sectional curvature
Heier, Gordon, Lu, Steven S. Y., and Wong, Bun, Journal of Differential Geometry, 2016 - Mean curvature flows in manifolds of special holonomy
Tsai, Chung-Jun and Wang, Mu-Tao, Journal of Differential Geometry, 2018 - $L^{2}$ extension for jets of holomorphic sections of a
hermitian line bundle
Popovici, Dan, Nagoya Mathematical Journal, 2005 - $G$-invariant holomorphic Morse inequalities
Puchol, Martin, Journal of Differential Geometry, 2017 - Classification of polarized manifolds by the second sectional Betti number
Fukuma, Yoshiaki, Hokkaido Mathematical Journal, 2013 - Quasitoric manifolds over a product of simplices
Choi, Suyoung, Masuda, Mikiya, and Suh, Dong Youp, Osaka Journal of Mathematics, 2010 - {$L\sp p$}-curvature and the Cauchy-Riemann equation near
an isolated singular point
Harris, Adam and Tonegawa, Yoshihiro, Nagoya Mathematical Journal, 2001 - Compact Quotient Manifolds of Domains in a Complex 3-Dimensional Projective Space and the Lebesgue Measure of Limit Sets
KATO, Masahide, Tokyo Journal of Mathematics, 1996