Nagoya Mathematical Journal

A bound on certain local cohomology modules and application to ample divisors

Claudia Albertini and Markus Brodmann

Full-text: Open access

Abstract

We consider a positively graded noetherian domain $R = \bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ for which $R_{0}$ is essentially of finite type over a perfect field $K$ of positive characteristic and we assume that the generic fibre of the natural morphism $\pi : Y = \rm{Proj}(R) \to Y_{0} = \rm{Spec}(R_{0})$ is geometrically connected, geometrically normal and of dimension $> 1$. Then we give bounds on the "ranks" of the $n$-th homogeneous part $H^{2}_{R_{+}} (R)_{n}$ of the second local cohomology module of $R$ with respect to $R_{+} := \bigoplus_{m > 0} R_{m}$ for $n < 0$. If $Y$ is in addition normal, we shall see that the $R_{0}$-modules $H^{2}_{R_{+}} (R)_{n}$ are torsion-free for all $n < 0$ and in this case our bounds on the ranks furnish a vanishing result. From these results we get bounds on the first cohomology of ample invertible sheaves in positive characteristic.

Article information

Source
Nagoya Math. J., Volume 163 (2001), 87-106.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631622

Mathematical Reviews number (MathSciNet)
MR1854390

Zentralblatt MATH identifier
1011.13011

Subjects
Primary: 14B15: Local cohomology [See also 13D45, 32C36]
Secondary: 13D45: Local cohomology [See also 14B15]

Citation

Albertini, Claudia; Brodmann, Markus. A bound on certain local cohomology modules and application to ample divisors. Nagoya Math. J. 163 (2001), 87--106. https://projecteuclid.org/euclid.nmj/1114631622


Export citation

References

  • C. Albertini, Schranken für die Kohomologie ampler Divisoren über normalen projektiven Varietäten in positiver Charakteristik, Dissertation, Universität Zürich (1996).
  • M. Brodmann, Bounds on the cohomological Hilbert functions of a projective variety , Journal of Algebra, 109 (1987), 352–380.
  • M. Brodmann, Cohomology of certain projective surfaces with low sectional genus and degree , Commutative Algebra, Algebraic Geometry and Computational Methods (D. Eisenbud, ed.), 173–200, Springer, New York (1999).
  • M. Brodmann, Cohomology of surfaces $X \subseteq {\smallBbb P}^{r}$ with degree $\leq 2r-2$ , Commutative Algebra and Algebraic Geometry (F. van Oystaeyen, ed.), 15–33, M. Dekker Lecture Notes 206, M. Dekker (1999).
  • M. Brodmann and U. Nagel, Bounding cohomological Hilbert functions by hyperplane sections , Journal of Algebra, 174 (1995), 323–348.
  • M. Brodmann and R. Y. Sharp, Local cohomology – An algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press (1998).
  • M. Brodmann and W. Vogel, Bounds for the cohomology and the Calstelnuovo regularity of certain surfaces , Nagoya Math. Journal, 131 (1993), 109–126.
  • P. Deligne and L. Illusie, Relèvements modulo $p^{2}$ et décomposition du complexe de Rham , Invent. Math., 89 (1987), 247–270.
  • H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar, Birkhäuser, Basel (1992).
  • Fujita, Classification theories of polarized varieties, LMS lecture notes 155, Cambridge University Press (1990).
  • A. Grothendieck, Eléments de géometrie algébrique III, Publ. Math. IHES 11 (1961).
  • R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics 156, Springer, Berlin (1970).
  • R. Hartshorne, Algebraic geometry, Graduate Text in Mathematics 52, Springer, New York (1977).
  • K. Kodaira, On a differential geometric method in the theory of analytic stacks , Proc. Nat. Acad. Sci. USA, 39 (1953), 1268–1273.
  • E. Kunz, Characterizations of regular local rings of characteristic $p$ , American Journal of Mathematics, 91 (1969), 772–784.
  • N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime characteristic , Proc. Indian Acad. Sci. Math. Sci., 107 (1997), no. 1, 21–25.
  • H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press (1989).
  • V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties , Ann. Math., 122 (1985), 27–40.
  • D. Mumford, Pathologies III , American Journal of Mathematics, 89 (1967), 96–104.
  • M. Raynaud, Contre-example au “vanishing theorem” en characteristique $p > 0$ , C. P. Ramanujam – a tribute, TIFR Studies in Mathematics 8, Springer, Oxford (1978), 273–278.
  • K. Smith, Fujita' freeness conjecture in terms of local cohomology , Journal of Algebraic Geometry, 6 (1997), 417–429.