Nagoya Mathematical Journal

On Waring's problem: three cubes and a sixth power

Jörg Brüdern and Trevor D. Wooley

Full-text: Open access

Abstract

We establish that almost all natural numbers not congruent to $5$ modulo $9$ are the sum of three cubes and a sixth power of natural numbers, and show, moreover, that the number of such representations is almost always of the expected order of magnitude. As a corollary, the number of representations of a large integer as the sum of six cubes and two sixth powers has the expected order of magnitude. Our results depend on a certain seventh moment of cubic Weyl sums restricted to minor arcs, the latest developments in the theory of exponential sums over smooth numbers, and recent technology for controlling the major arcs in the Hardy-Littlewood method, together with the use of a novel quasi-smooth set of integers.

Article information

Source
Nagoya Math. J., Volume 163 (2001), 13-53.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631619

Mathematical Reviews number (MathSciNet)
MR1854387

Zentralblatt MATH identifier
0989.11047

Subjects
Primary: 11P05: Waring's problem and variants
Secondary: 11L15: Weyl sums 11P55: Applications of the Hardy-Littlewood method [See also 11D85]

Citation

Brüdern, Jörg; Wooley, Trevor D. On Waring's problem: three cubes and a sixth power. Nagoya Math. J. 163 (2001), 13--53. https://projecteuclid.org/euclid.nmj/1114631619


Export citation

References

  • T. Breyer, Über die Summe von sechs Kuben und zwei sechsten Potenzen, Diplomarbeit, Universität Göttingen (1996).
  • J. Brüdern, Iterationsmethoden in der additiven Zahlentheorie, Dissertation, Göttingen (1988).
  • ––––, A problem in additive number theory , Math. Proc. Cambridge Philos. Soc., 103 (1988), 27–33.
  • ––––, On Waring's problem for cubes and biquadrates. II , Math. Proc. Cambridge Philos. Soc., 104 (1988), 199–206.
  • ––––, On Waring's problem for cubes , Math. Proc. Cambridge Philos. Soc., 109(1991), 229–256.
  • ––––, A note on cubic exponential sums , Sém. Théorie des Nombres, Paris, 1990-1991 (S. David, ed.), Progr. Math. 108, Birkhäuser Boston, Boston MA (1993), 23–34.
  • J. Brüdern, K. Kawada and T. D. Wooley, Additive representation in thin sequences, IV: lower bound methods , Quart. J. Math. Oxford (2) (in press); V: mixed problems of Waring type, Math. Scand. (to appear).
  • J. Brüdern and T. D. Wooley, On Waring's problem for cubes and smooth Weyl sums , Proc. London Math. Soc. (3), 82(2001), 89–109.
  • K. B. Ford, The representation of numbers as sums of unlike powers. II , J. Amer. Math. Soc., 9(1996), 919–940.
  • J. B. Friedlander, Integers free from large and small primes , Proc. London Math. Soc. (3), 33(1976), 565–576.
  • L.-K. Hua, On the representation of numbers as the sums of the powers of primes , Math. Z., 44(1938), 335–346.
  • K. Kawada, On the sum of four cubes , Mathematika, 43(1996), 323–348.
  • Ming Gao Lu, On Waring's problem for cubes and higher powers , Chin. Sci. Bull., 37(1992), 1414–1416.
  • ––––, On Waring's problem for cubes and fifth power , Sci. China Ser. A, 36 (1993), 641–662.
  • E. Saias, Entiers sans grand ni petit facteur premier. I , Acta Arith., 61 (1992), 347–374.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics, 46 , Cambridge University Press, Cambridge(1995).
  • R. C. Vaughan, On Waring's problem for cubes , J. Reine Angew. Math., 365 (1986), 122–170.
  • ––––, On Waring's problem for cubes II , J. London Math. Soc. (2), 39(1989), 205–218.
  • ––––, A new iterative method in Waring's problem , Acta Math., 162(1989), 1–71.
  • ––––, The Hardy-Littlewood method, 2nd edition (1997, Cambridge University Press, Cambridge).
  • R. C. Vaughan and T. D. Wooley, On Waring's problem: some refinements , Proc. London Math. Soc. (3), 63 (1991), 35–68.
  • ––––, Further improvements in Waring's problem , Acta Math., 174(1995), 147–240.
  • T. D. Wooley, Large improvements in Waring's problem , Ann. of Math. (2), 135(1992), 131–164.
  • ––––, Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour , Inventiones Math., 122 (1995), 421–451.