Nagoya Mathematical Journal

On the extension of {$L\sp 2$} holomorphic functions V - Effects of generalization

Takeo Ohsawa

Full-text: Open access

Abstract

A general extension theorem for $L^2$ holomorphic bundle-valued top forms is formulated. Although its proof is based on a principle similar to Ohsawa-Takegoshi's extension theorem, it explains previous $L^2$ extendability results systematically and bridges extension theory and division theory.

Article information

Source
Nagoya Math. J., Volume 161 (2001), 1-21.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631550

Mathematical Reviews number (MathSciNet)
MR1820210

Zentralblatt MATH identifier
0986.32002

Subjects
Primary: 32A36: Bergman spaces
Secondary: 32D15: Continuation of analytic objects

Citation

Ohsawa, Takeo. On the extension of {$L\sp 2$} holomorphic functions V - Effects of generalization. Nagoya Math. J. 161 (2001), 1--21. https://projecteuclid.org/euclid.nmj/1114631550


Export citation

References

  • P. Bonneau and K. Diederich, Integral solution operators for the Cauchy- Riemann equations on pseudoconvex domains , Math. Ann., 286 (1990), 77–100.
  • B. Berndtsson and J.M. Ortega, On interpolation and sampling in Hilbert space of analytic functions , J. Reine. Angew. Math., 464 (1995), 109–128.
  • J.-P. Demailly, Scindage holomorphe d'un morphisme de fibrés vectoriells semi-positifs avec estimations $L^2$ , Séminaire Pierre Lelong-Henri Skoda (Analysis), 1980/1981, and Colloquium at Wimereux, May 1981, pp.77–107. LNM, 919 Springer, Berlin-New York, 1982.
  • K. Diederich and J.E. Fornaess, On the nature of thin complements of complete Kähler metrics , Math. Ann., 264 (1984), 475–495.
  • K. Diederich, G. Herbort and T. Ohsawa, The Bergman kernel on uniformly extendable pseudoconvex domains , Math. Ann., 273 (1986), 371–384.
  • H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik , Math. Ann., 131 (1956), 38–75.
  • R.E. Greene and S. Krantz, Deformation of complex structures, estimates for the equation, and stability of the Bergman kernel , Adv. in Math., 43 (1982), 1–86.
  • G. Henkin and J. Leiterer, The Oka-Grauert principle without induction over the base dimension , Math. Ann., 311 (1998), 71–93.
  • L. Manivel, Un théorème de prolongement $L^2$ des sections holomorphes d'un fibré hermitein , Math. Z., 212 (1993), 107–122.
  • T. Ohsawa, On complete Kähler domains with $C^1$ boundary , Publ.. RIMS, Kyoto Univ., 15 (1980), 929–940.
  • ––––, On the extenson of $L^2$ holomorphic functions II , Publ. RIMS, Kyoto Univ., 24 (1988), 265–275.
  • ––––, The existence of right inverses of residue homomorphisms, Complex Analysis and Geometry, Plenum Press, New York (1993), 285–291.
  • ––––, On the Bergman kernel of hyperconvex domains , Nagoya Math. J., 129 (1993), 43–52.
  • ––––, On the extension of $L^2$ holomorphic functions III: negligible weights , Math. Z., 219 (1995), 215–225.
  • ––––, Addendum to “On the Bergman kernel of hyperconvex domians" , Nagoya Math. J., 137 (1995), 145–148.
  • ––––, On the extension of $L^2$ holomorphic functions IV: a new density concept , Geometry and Analysis on Complex Manifolds, Festschrift for Prof. S. Kobayashi, World Sci. 1994, pp. 157–170.
  • T. Ohsawa and K. Takegoshi, On the extension of $L^2$ holomorphic funcitons , Math. Z., 195 (1987), 197–204.
  • K. Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space I , J. Reine Angew. Math., 429 (1992), 91–106.
  • ––––, Beurling type density theorems in the unit disc , Invent. Math., 113 (1993), 21–39.
  • K. Seip and R. Wallstén, Density theorems for sampling and interpolation in the Bargmann-Fock space II , J. Reine Angew. Math., 429 (1992), 107–113.
  • Y.T. Siu, Every Stein subvariety admits a Stein neighbourhood , Invent. Math., 38 (1976/77), 89–100.
  • H. Skoda, Application des techniques $L^2$ à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids , Ann. Sci. Ec. Norm. Sup., 5 (1972), 545–579.
  • ––––, Morphismes surjectifs de fibrés vectoriels semi-positifs , Ann. Sci. Ecole Norm. Sup., 11 (1978), 577–611.
  • ––––, Relèvement des sections globales dans les fibrés semi-positifs , Séminaire Pierre Lelong-Henri Skoda (Analyse), Années 1978/79 LNM 822, Springer, Berlin 1980 pp.259–301.
  • N. Suita, Capacities and kernels on Riemann surfaces , Arch. Rational Mech. Anal., 46 (1972), 212–217.
  • S. Takayama, Adjoint linear series on weakly $1$-complete Kähler manifolds I: Global projective embedding , Math. Ann., 311 (1998), 501–531.