Nagoya Mathematical Journal

Embeddings of curves and surfaces

Fabrizio Catanese, Marco Franciosi, Klaus Hulek, and Miles Reid

Full-text: Open access

Abstract

We prove a general embedding theorem for Cohen-Macaulay curves (possibly nonreduced), and deduce a cheap proof of the standard results on pluricanonical embeddings of surfaces, assuming vanishing $H^{1}(2K_{X}) = 0$.

Article information

Source
Nagoya Math. J., Volume 154 (1999), 185-220.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631228

Mathematical Reviews number (MathSciNet)
MR1689180

Zentralblatt MATH identifier
0933.14003

Subjects
Primary: 14J29: Surfaces of general type
Secondary: 14C20: Divisors, linear systems, invertible sheaves 14E25: Embeddings

Citation

Catanese, Fabrizio; Franciosi, Marco; Hulek, Klaus; Reid, Miles. Embeddings of curves and surfaces. Nagoya Math. J. 154 (1999), 185--220. https://projecteuclid.org/euclid.nmj/1114631228


Export citation