Nihonkai Mathematical Journal
- Nihonkai Math. J.
- Volume 22, Number 2 (2011), 67-71.
On the Category of Confinite Modules for Principal Ideals
Abstract
In this paper, it is pointed out that ${\mathcal M}(A, I)_{cof}$ is an Abelian full subcategory of the category ${\mathcal M}(A)$ consisting of all $A$-modules for a principal ideal $I$ over a noetherian ring $A$.
Article information
Source
Nihonkai Math. J., Volume 22, Number 2 (2011), 67-71.
Dates
First available in Project Euclid: 14 June 2012
Permanent link to this document
https://projecteuclid.org/euclid.nihmj/1339696712
Mathematical Reviews number (MathSciNet)
MR2952818
Zentralblatt MATH identifier
1247.14003
Subjects
Primary: 14B15: Local cohomology [See also 13D45, 32C36] 13D03: (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
Secondary: 18G15: Ext and Tor, generalizations, Künneth formula [See also 55U25]
Keywords
Local cohomology Cofinite module Abelian category
Citation
Kawasaki, Ken-Ichiroh. On the Category of Confinite Modules for Principal Ideals. Nihonkai Math. J. 22 (2011), no. 2, 67--71. https://projecteuclid.org/euclid.nihmj/1339696712