Nihonkai Mathematical Journal

The Subdivision of the Window Derived from Finite Subsequences of Fibonacci Sequences

Hiroko Hayashi and Kazushi Komatsu

Full-text: Open access

Abstract

The Fibonacci sequences can be identified with 1-dimensional quasiperiodic tilings by the canonical projection method. We divide the window of the canonical projection method into smaller intervals by using local configurations. Then, we show that the intervals which appears in the window are divided into the ratio at $1:1/\tau:1$ ad infinitum.

Article information

Source
Nihonkai Math. J., Volume 22, Number 2 (2011), 59-66.

Dates
First available in Project Euclid: 14 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.nihmj/1339696711

Mathematical Reviews number (MathSciNet)
MR2952817

Zentralblatt MATH identifier
1256.37004

Subjects
Primary: 52C23: Quasicrystals, aperiodic tilings
Secondary: 37E05: Maps of the interval (piecewise continuous, continuous, smooth)

Keywords
projection method

Citation

Hayashi, Hiroko; Komatsu, Kazushi. The Subdivision of the Window Derived from Finite Subsequences of Fibonacci Sequences. Nihonkai Math. J. 22 (2011), no. 2, 59--66. https://projecteuclid.org/euclid.nihmj/1339696711


Export citation

References

  • N.G. de Bruijn. Sequences of zeros and ones generated by special production rules. Nederl. Akad. Wetensch. Proc. Ser. A 84 (= Indag. Math. 43) (1981) 38–66.
  • N.G. de Bruijn. Updown generation of Beatty sequences. Nederl. Akad. Wetensch. Proc. Ser. A 92 (= Indag. Math. 51) (1989) 385–407.
  • M. Senechal, Quasicrystals and Geometry, Cambridge Univ. Press, (1996).
  • V. T. $\mathrm{S \acute{o}s}$, On the theory of diophantine approximations. I, Acta Math. Hungarica, 8 (1957) 461–472.
  • V. T. $\mathrm{S \acute{o}s}$, On the distribution mod 1 of sequence $n\alpha$, Ann. Univ. Sci. Budapest, $\mathrm{E\ddot{o}tv\ddot{o}s}$ Sect. Math., 1 (1958) 127–134.