Nihonkai Mathematical Journal

The Subdivision of the Window Derived from Finite Subsequences of Fibonacci Sequences

Hiroko Hayashi and Kazushi Komatsu

Full-text: Open access


The Fibonacci sequences can be identified with 1-dimensional quasiperiodic tilings by the canonical projection method. We divide the window of the canonical projection method into smaller intervals by using local configurations. Then, we show that the intervals which appears in the window are divided into the ratio at $1:1/\tau:1$ ad infinitum.

Article information

Nihonkai Math. J., Volume 22, Number 2 (2011), 59-66.

First available in Project Euclid: 14 June 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 52C23: Quasicrystals, aperiodic tilings
Secondary: 37E05: Maps of the interval (piecewise continuous, continuous, smooth)

projection method


Hayashi, Hiroko; Komatsu, Kazushi. The Subdivision of the Window Derived from Finite Subsequences of Fibonacci Sequences. Nihonkai Math. J. 22 (2011), no. 2, 59--66.

Export citation


  • N.G. de Bruijn. Sequences of zeros and ones generated by special production rules. Nederl. Akad. Wetensch. Proc. Ser. A 84 (= Indag. Math. 43) (1981) 38–66.
  • N.G. de Bruijn. Updown generation of Beatty sequences. Nederl. Akad. Wetensch. Proc. Ser. A 92 (= Indag. Math. 51) (1989) 385–407.
  • M. Senechal, Quasicrystals and Geometry, Cambridge Univ. Press, (1996).
  • V. T. $\mathrm{S \acute{o}s}$, On the theory of diophantine approximations. I, Acta Math. Hungarica, 8 (1957) 461–472.
  • V. T. $\mathrm{S \acute{o}s}$, On the distribution mod 1 of sequence $n\alpha$, Ann. Univ. Sci. Budapest, $\mathrm{E\ddot{o}tv\ddot{o}s}$ Sect. Math., 1 (1958) 127–134.