Notre Dame Journal of Formal Logic

Book Review: Mark van Atten. On Brouwer

O. Bradley Bassler

Article information

Source
Notre Dame J. Formal Logic, Volume 47, Number 4 (2006), 581-599.

Dates
First available in Project Euclid: 9 January 2007

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1168352669

Digital Object Identifier
doi:10.1305/ndjfl/1168352669

Subjects
Primary: 03A05: Philosophical and critical {For philosophy of mathematics, see also 00A30}
Secondary: 03F55: Intuitionistic mathematics

Keywords
intuitionism bar theorem fan theorem Brouwer choice sequences creating subject intersubjectivity

Citation

Bassler, O. Bradley. Book Review: Mark van Atten. On Brouwer. Notre Dame J. Formal Logic 47 (2006), no. 4, 581--599. doi:10.1305/ndjfl/1168352669. https://projecteuclid.org/euclid.ndjfl/1168352669


Export citation

References

  • [1] van Atten, M., On Brouwer, Wadsworth Philosophers Series. Wadsworth/Thomson Learning, Belmont, 2004.
  • [2] van Atten, M., Phenomenology of Choice Sequences, Ph.D. thesis, Quaestiones Infinitae. 31. Zeno-Institute, Utrecht University, 1999. Forthcoming in a revised version in the Synthese Library, Springer (Dordrecht).
  • [3] van Atten, M., and D. van Dalen, "Arguments for the continuity principle", The Bulletin of Symbolic Logic, vol. 8 (2002), pp. 329--47.
  • [4] Bassler, O. B., "Essay-review of John P. Mayberry's The Foundations of Mathematics in the Theory of Sets", Notre Dame Journal of Formal Logic, vol. 46 (2005), pp. 107--125.
  • [5] Dummett, M., Truth and Other Enigmas, Harvard Press, Cambridge, 1978.
  • [6] van Heijenoort, J., From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, Harvard University Press, Cambridge, 1967.
  • [7] Husserl, E., Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy, Martinus Hijhoff, The Hague, 1980. Translated by T. E. Klein and W. E. Pohl.
  • [8] Schmitt, R., Husserl's Philosophie der Mathematik: Platonistische und konstructivitische Momente in Husserl's Mathematikbegriff, Bouvier, Bonn, 1981.
  • [9] Troelstra, A. S., and D. van Dalen, Constructivism in Mathematics. An Introduction. Vol. I, vol. 121 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1988.