Notre Dame Journal of Formal Logic

Unifying Functional Interpretations

Paulo Oliva


This article presents a parametrized functional interpretation. Depending on the choice of two parameters one obtains well-known functional interpretations such as Gödel's Dialectica interpretation, Diller-Nahm's variant of the Dialectica interpretation, Kohlenbach's monotone interpretations, Kreisel's modified realizability, and Stein's family of functional interpretations. A functional interpretation consists of a formula interpretation and a soundness proof. I show that all these interpretations differ only on two design choices: first, on the number of counterexamples for A which became witnesses for ¬A when defining the formula interpretation and, second, the inductive information about the witnesses of A which is considered in the proof of soundness. Sufficient conditions on the parameters are also given which ensure the soundness of the resulting functional interpretation. The relation between the parametrized interpretation and the recent bounded functional interpretation is also discussed.

Article information

Notre Dame J. Formal Logic, Volume 47, Number 2 (2006), 263-290.

First available in Project Euclid: 25 July 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03F07: Structure of proofs
Secondary: 03F10: Functionals in proof theory

functional interpretations dialectica interpretation modified realizability monotone functional interpretations majorizability proof mining


Oliva, Paulo. Unifying Functional Interpretations. Notre Dame J. Formal Logic 47 (2006), no. 2, 263--290. doi:10.1305/ndjfl/1153858651.

Export citation


  • [1] Avigad, J., and S. Feferman, "Gödel's functional (`Dialectica') interpretation", pp. 337--405 in Handbook of Proof Theory, edited by S. R. Buss, vol. 137 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1998.
  • [2] Berger, U., and P. Oliva, "Modified bar recursion and classical dependent choice", pp. 89--107 in Logic Colloquium '01, vol. 20 of Lecture Notes in Logic, Association for Symbolic Logic, Urbana, 2005.
  • [3] Bezem, M., "Strongly majorizable functionals of finite type: A model for bar recursion containing discontinuous functionals", The Journal of Symbolic Logic, vol. 50 (1985), pp. 652--60.
  • [4] Diller, J., and W. Nahm, "Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen", Archiv für mathematische Logik und Grundlagenforschung, vol. 16 (1974), pp. 49--66.
  • [5] Ferreira, F., "A feasible theory for analysis", The Journal of Symbolic Logic, vol. 59 (1994), pp. 1001--1011.
  • [6] Ferreira, F., and P. Oliva, "Bounded functional interpretation in feasible analysis". forthcoming in Annals of Pure and Applied Logic.
  • [7] Ferreira, F., and P. Oliva, "Bounded functional interpretation", Annals of Pure and Applied Logic, vol. 135 (2005), pp. 73--112.
  • [8] Gödel, K., "Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes", Dialectica, vol. 12 (1958), pp. 280--87.
  • [9] Howard, W. A., "Appendix: Hereditarily majorizable function of finite type", pp. 454--61 in Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, edited by A. S. Troelstra, vol. 344 of Lecture Notes in Mathematics, Springer, Berlin, 1973.
  • [10] Hyland, J. M. E., "Proof theory in the abstract", Annals of Pure and Applied Logic, vol. 114 (2002), pp. 43--78. Commemorative Symposium Dedicated to Anne S. Troelstra (Noordwijkerhout, 1999).
  • [11] Kohlenbach, U., "Analysing proofs in analysis", pp. 225--60 in Logic: From Foundations to Applications (Staffordshire, 1993), edited by W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, Oxford Science Publications, Oxford University Press, New York, 1996.
  • [12] Kohlenbach, U., "Relative constructivity", The Journal of Symbolic Logic, vol. 63 (1998), pp. 1218--38.
  • [13] Kreisel, G., "Interpretation of analysis by means of constructive functionals of finite types", pp. 101--128 in Constructivity in Mathematics: Proceedings of the Colloquium (Amsterdam, 1957), edited by A. Heyting, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1959.
  • [14] Kreisel, G., "On weak completeness of intuitionistic predicate logic", The Journal of Symbolic Logic, vol. 27 (1962), pp. 139--58.
  • [15] Shoenfield, J. R., Mathematical Logic, Addison-Wesley Publishing Company, 1967.
  • [16] Spector, C., "Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics", pp. 1--27 in Proceedings of the Symposium on Pure Mathematics, edited by F. D. E. Dekker, vol. 5, American Mathematical Society, Providence, 1962.
  • [17] Stein, M., "Interpretationen der Heyting-Arithmetik endlicher Typen", Archiv für mathematische Logik und Grundlagenforschung, vol. 19 (1978/79), pp. 175--89.
  • [18] Troelstra, A. S., "Introductory note to 1958 and 1972", pp. 217--241 in Kurt Gödel Collected Works. Vol. II, edited by S. Feferman, The Clarendon Press, New York, 1990. Publications 1938--1974.
  • [19] Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, 2d edition, vol. 43 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 2000.