Notre Dame Journal of Formal Logic

Notes on Singular Cardinal Combinatorics

James Cummings


We present a survey of combinatorial set theory relevant to the study of singular cardinals and their successors. The topics covered include diamonds, squares, club guessing, forcing axioms, and PCF theory.

Article information

Notre Dame J. Formal Logic Volume 46, Number 3 (2005), 251-282.

First available in Project Euclid: 30 August 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03E

diamond square club guessing forcing axioms PCF


Cummings, James. Notes on Singular Cardinal Combinatorics. Notre Dame J. Formal Logic 46 (2005), no. 3, 251--282. doi:10.1305/ndjfl/1125409326.

Export citation


  • [1] Abraham, U., and M. Magidor, "Cardinal arithmetic", forthcoming in the Handbook of Set Theory.
  • [2] Baumgartner, J. E., "A new class of order types", Annals of Mathematical Logic, vol. 9 (1976), pp. 187--222.
  • [3] Baumgartner, J. E., "Iterated forcing", pp. 1--59 in Surveys in Set Theory, vol. 87, Cambridge University Press, Cambridge, 1983.
  • [4] Cummings, J., M. Foreman, and M. Magidor, "Canonical invariants for models of ZFC": Part Two, forthcoming in Annals of Pure and Applied Logic.
  • [5] Cummings, J., M. Foreman, and M. Magidor, "Squares, scales and stationary reflection", Journal of Mathematical Logic, vol. 1 (2001), pp. 35--98.
  • [6] Foreman, M., and M. Magidor, "A very weak square principle", The Journal of Symbolic Logic, vol. 62 (1997), pp. 175--96.
  • [7] Gregory, J., "Higher Souslin trees and the generalized continuum hypothesis", The Journal of Symbolic Logic, vol. 41 (1976), pp. 663--71.
  • [8] Harrington, L., and S. Shelah, "Some exact equiconsistency results in set theory", Notre Dame Journal of Formal Logic, vol. 26 (1985), pp. 178--88.
  • [9] Ishiu, T., "Club guessing sequences and filters", forthcoming in The Journal of Symbolic Logic.
  • [10] Jensen, R. B., "The fine structure of the constructible hierarchy", Annals of Mathematical Logic, vol. 4 (1972), pp. 229--308; erratum, ibid. p. 443.
  • [11] Magidor, M., "Lectures on weak square principles and forcing axioms", given in the Jerusalem Logic Seminar, 1995.
  • [12] Magidor, M., and S. Shelah, "When does almost free imply free? (For groups, transversals, etc.)", Journal of the American Mathematical Society, vol. 7 (1994), pp. 769--830.
  • [13] Milner, E. C., and S. Shelah, "Some t"heorems on transversals, pp. 1115--26 in Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol III, North Holland, Amsterdam, 1975.
  • [14] Mitchell, W., "Aronszajn trees and the independence of the transfer property", Annals of Mathematical Logic, vol. 5 (1972/73), pp. 21--46. špace-1pt
  • [15] Shelah, S., "A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals", Israel Journal of Mathematics, vol. 21 (1975), pp. 319--49. špace-1pt
  • [16] Shelah, S., "On successors of singular cardinals", pp. 357--80 in Logic Colloquium '78 (Mons, 1978), vol. 97 of Studies in the Logic and Foundations of Mathematics, North-Holland, Amsterdam, 1979. špace-1pt
  • [17] Shelah, S., Cardinal Arithmetic, vol. 29 of Oxford Logic Guides, The Clarendon Press, New York, 1994. špace-1pt
  • [18] Solovay, R. M., W. N. Reinhardt, and A. Kanamori, "Strong axioms of infinity and elementary embeddings", Annals of Mathematical Logic, vol. 13 (1978), pp. 73--116. špace-1pt
  • [19] Todorčević, S., "A note on the proper forcing axiom", pp. 209--218 in Axiomatic Set Theory, edited by erseeditorsnames J. E. Baumgartner and D. A. Martin and S. Shelah, American Mathematical Society, Providence, 1983. špace-1pt
  • [20] Todorčević, S., "Partitioning pairs of countable ordinals", Acta Mathematica, vol. 159 (1987), pp. 261--94.