Notre Dame Journal of Formal Logic

Implicit Definability of Subfields

Kenji Fukuzaki and Akito Tsuboi

Abstract

We say that a subset A of M is implicitly definable in M if there exists a sentence $\varphi(P)$ in the language $\mathcal{L}(M) \cup \{P\}$ such that A is the unique set with $(M,A) \models \varphi(P)$. We consider implicit definability of subfields of a given field. Among others, we prove the following: $\overline{\mathbb{Q}}$ is not implicitly $\emptyset$-definable in any of its (proper) elementary extension $K \succ \overline{\mathbb{Q}}$. $\mathbb{Q}$ is implicitly $\emptyset$-definable in any field K (of characteristic 0) with tr.deg $_{\mathbb{Q}}K < \omega$. In a field extension $\mathbb{Q} < K$ with K algebraically closed, $\mathbb{Q}$ is implicitly definable in K if and only if tr.deg $_{\mathbb{Q}}(K)$ is finite.

Article information

Source
Notre Dame J. Formal Logic, Volume 44, Number 4 (2003), 217-225.

Dates
First available in Project Euclid: 29 July 2004

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1091122499

Digital Object Identifier
doi:10.1305/ndjfl/1091122499

Mathematical Reviews number (MathSciNet)
MR2130307

Zentralblatt MATH identifier
1066.03043

Subjects
Primary: 03C40: Interpolation, preservation, definability

Keywords
implicit definability fields

Citation

Fukuzaki, Kenji; Tsuboi, Akito. Implicit Definability of Subfields. Notre Dame J. Formal Logic 44 (2003), no. 4, 217--225. doi:10.1305/ndjfl/1091122499. https://projecteuclid.org/euclid.ndjfl/1091122499


Export citation

References

  • Chang, C. C., and H. J. Keisler, Model Theory, vol. 73 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1973.
  • Hájek, P., and P. Pudlák, Metamathematics of First-order Arithmetic, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1993.
  • Jensen, C. U., and H. Lenzing, Model-theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, vol. 2 of Algebra, Logic and Applications, Gordon and Breach Science Publishers, New York, 1989.
  • Kaye, R., Models of Peano Arithmetic, vol. 15 of Oxford Logic Guides, The Clarendon Press, New York, 1991.
  • Poizat, B., A Course in Model Theory. An Introduction to Contemporary Mathematical Logic, Universitext. Springer-Verlag, New York, 2000. Translated from the French by Moses Klein and revised by the author.
  • Robinson, J., "The undecidability of algebraic rings and fields", Proceedings of the American Mathematical Society, vol. 10 (1959), pp. 950–57.
  • Robinson, R. M., "The undecidability of pure transcendental extensions of real fields", Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 10 (1964), pp. 275–82.
  • Shelah, S., and A. Tsuboi, "Definability of initial segments", Notre Dame Journal of Formal Logic, vol. 43 (2002), pp. 65–73 (2003).