Open Access
2003 Implicit Definability of Subfields
Kenji Fukuzaki, Akito Tsuboi
Notre Dame J. Formal Logic 44(4): 217-225 (2003). DOI: 10.1305/ndjfl/1091122499

Abstract

We say that a subset A of M is implicitly definable in M if there exists a sentence $\varphi(P)$ in the language $\mathcal{L}(M) \cup \{P\}$ such that A is the unique set with $(M,A) \models \varphi(P)$. We consider implicit definability of subfields of a given field. Among others, we prove the following: $\overline{\mathbb{Q}}$ is not implicitly $\emptyset$-definable in any of its (proper) elementary extension $K \succ \overline{\mathbb{Q}}$. $\mathbb{Q}$ is implicitly $\emptyset$-definable in any field K (of characteristic 0) with tr.deg $_{\mathbb{Q}}K < \omega$. In a field extension $\mathbb{Q} < K$ with K algebraically closed, $\mathbb{Q}$ is implicitly definable in K if and only if tr.deg $_{\mathbb{Q}}(K)$ is finite.

Citation

Download Citation

Kenji Fukuzaki. Akito Tsuboi. "Implicit Definability of Subfields." Notre Dame J. Formal Logic 44 (4) 217 - 225, 2003. https://doi.org/10.1305/ndjfl/1091122499

Information

Published: 2003
First available in Project Euclid: 29 July 2004

zbMATH: 1066.03043
MathSciNet: MR2130307
Digital Object Identifier: 10.1305/ndjfl/1091122499

Subjects:
Primary: 03C40

Keywords: fields , implicit definability

Rights: Copyright © 2003 University of Notre Dame

Vol.44 • No. 4 • 2003
Back to Top