Notre Dame Journal of Formal Logic

Computing Verisimilitude

Chris Brink and Katarina Britz


This paper continues the power ordering approach to verisimilitude. We define a parameterized verisimilar ordering of theories in the finite propositional case, both semantically and syntactically. The syntactic definition leads to an algorithm for computing verisimilitude. Since the power ordering approach to verisimilitude can be translated into a standard notion of belief revision, the algorithm thereby also allows the computation of membership of a belief-revised theory.

Article information

Notre Dame J. Formal Logic Volume 36, Number 1 (1995), 30-43.

First available in Project Euclid: 19 December 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B60: Other nonclassical logic
Secondary: 68T27: Logic in artificial intelligence


Britz, Katarina; Brink, Chris. Computing Verisimilitude. Notre Dame J. Formal Logic 36 (1995), no. 1, 30--43. doi:10.1305/ndjfl/1040308827.

Export citation


  • [1] Andrews, P. B., An Introduction to Mathematical Logic and Type Theory: to Truth through Proof, Computer Science and Applied Mathematics Series, Academic Press, Orlando, 1986.
  • [2] Barwise, J., editor, Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland, Amsterdam, 1977.
  • [3] Brink, C., ``Verisimilitude: views and reviews,'' History and Philosophy of Logic, vol. 10 (1989), pp. 181--201.
  • [4] Brink, C., ``Power structures,'' Algebra Universalis, vol. 30 (1993), pp. 177--216.
  • [5] Brink, C., and J. Heidema, ``A versimilar ordering of theories phrased in a propositional language,'' British Journal for the Philosophy of Science, vol. 38 (1987), pp. 533--549.
  • [6] Brink, C., and J. Heidema, ``A verisimilar ordering of propositional theories: the infinite case,'' Technical Report TR-ARP-1/89, Research School of Social Sciences, Australian National University, Canberra, 1989.
  • [7] Brink, C., J. J. C. Vermeulen, and J. P. G. Pretorius, ``Verisimilitude via vietoris,'' Journal of Logic and Computation, vol. 2 (1992), pp. 709--718.
  • [8] Burger, I. C., and J. Heidema, ``Comparing theories by their positive and negative contents,'' The British Journal for the Philosophy of Science, vol. 44 (1993), pp. 605--630.
  • [9] Makinson, D., and P. Gärdenfors, ``Relations between the logic of theory change and nonmonotonic logic,'' pp. 185--205 in The Logic of Theory Change, edited by A. Fuhrmann and M. Morreau, Lecture Notes in Artificial Intelligence, vol. 465, Springer-Verlag, Berlin, 1991.
  • [10] Miller, D., ``Popper's qualitative theory of verisimilitude,'' British Journal for the Philosophy of Science, vol. 25 (1974), pp. 166--177.
  • [11] Popper, K. R., Conjectures and Refutations, Routledge and Kegan Paul, London, 1963.
  • [12] Ryan, M. D., ``Defaults and revision in structured theories,'' pp. 362--373 in Proceedings Sixth IEEE Symposium on Logic in Computer Science (LICS), IEEE, Amsterdam, 1991.
  • [13] Ryan, M. D., and P.-Y. Schobbens, ``Belief revision and verisimilitude,'' Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 15--29.
  • [14] Schurz, G., and P. Weingartner, ``Verisimilitude defined by relevant consequence-elements,'' pp. 47--77 in What is closer-to-the-truth?, Rodopi, Amsterdam, 1987.
  • [15] Shoham, Y., Reasoning about Change, MIT Press, Cambridge, 1988.
  • [16] Tichý, P., ``On Popper's definitions of verisimilitude,'' British Journal for the Philosophy of Science, vol. 25 (1974), pp. 155--188.