Notre Dame Journal of Formal Logic

Minimal Non-contingency Logic

Steven T. Kuhn


Simple finite axiomatizations are given for versions of the modal logics K and K4 with non-contingency (or contingency) as the sole modal primitive. This answers two questions of I. L. Humberstone.

Article information

Notre Dame J. Formal Logic, Volume 36, Number 2 (1995), 230-234.

First available in Project Euclid: 18 December 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B45: Modal logic (including the logic of norms) {For knowledge and belief, see 03B42; for temporal logic, see 03B44; for provability logic, see also 03F45}


Kuhn, Steven T. Minimal Non-contingency Logic. Notre Dame J. Formal Logic 36 (1995), no. 2, 230--234. doi:10.1305/ndjfl/1040248456.

Export citation


  • Brogan, A. P., “Aristotle's logic of statements about contingency,” Mind, vol. 76 (1967), pp. 49–81.
  • Cresswell, M. J., “Necessity and contingency,” Studia Logica, vol. 47 (1988), pp. 145–149. Zbl 0666.03015 MR 90d:03032
  • Humberstone, I. L., “The logic of non-contingency,” Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 214–229. Zbl 0833.03004 MR 96g:03029
  • Mortensen, C., “A sequence of normal modal systems with non-contingency bases,” Logique et Analyse, vol. 19 (1976), pp. 341–344. Zbl 0347.02014 MR 58:16154
  • Montgomery, H., and R. Routley, “Contingency and non-contingency bases for normal modal logics,” Logique et Analyse, vol. 9 (1966), pp. 318–328. Zbl 0294.02008 MR 36:6270
  • Montgomery, H., and R. Routley, “Non-contingency axioms for S4 and S5,” Logique et Analyse, vol. 9 (1968), pp. 422–428. Zbl 0169.30003 MR 38:4288
  • Montgomery, H., and R. Routley, “Modalities in a sequence of normal non-contingency modal systems,” Logique et Analyse, vol. 12 (1969), pp. 225–227. Zbl 0196.00902 MR 43:7305