Notre Dame Journal of Formal Logic
- Notre Dame J. Formal Logic
- Volume 36, Number 3 (1995), 364-381.
On Gabbay's Proof of the Craig Interpolation Theorem for Intuitionistic Predicate Logic
Abstract
Using the framework of categorical logic, this paper analyzes and streamlines Gabbay's semantical proof of the Craig interpolation theorem for intuitionistic predicate logic. In the process, an apparently new and interesting fact about the relation of coherent and intuitionistic logic is found.
Article information
Source
Notre Dame J. Formal Logic, Volume 36, Number 3 (1995), 364-381.
Dates
First available in Project Euclid: 17 December 2002
Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1040149353
Digital Object Identifier
doi:10.1305/ndjfl/1040149353
Mathematical Reviews number (MathSciNet)
MR1351410
Zentralblatt MATH identifier
0835.03030
Subjects
Primary: 03G30: Categorical logic, topoi [See also 18B25, 18C05, 18C10]
Secondary: 03B20: Subsystems of classical logic (including intuitionistic logic) 03C40: Interpolation, preservation, definability 03F55: Intuitionistic mathematics
Citation
Makkai, Michael. On Gabbay's Proof of the Craig Interpolation Theorem for Intuitionistic Predicate Logic. Notre Dame J. Formal Logic 36 (1995), no. 3, 364--381. doi:10.1305/ndjfl/1040149353. https://projecteuclid.org/euclid.ndjfl/1040149353


