Notre Dame Journal of Formal Logic

A Constructive Valuation Semantics for Classical Logic

Franco Barbanera and Stefano Berardi

Abstract

This paper presents a constructive interpretation for the proofs in classical logic of $\Sigma^0_1$ -sentences and for a witness extraction procedure based on Prawitz's reduction rules.

Article information

Source
Notre Dame J. Formal Logic, Volume 37, Number 3 (1996), 462-482.

Dates
First available in Project Euclid: 14 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039886522

Digital Object Identifier
doi:10.1305/ndjfl/1039886522

Mathematical Reviews number (MathSciNet)
MR1434431

Zentralblatt MATH identifier
0882.03007

Subjects
Primary: 03B10: Classical first-order logic
Secondary: 03F07: Structure of proofs

Citation

Barbanera, Franco; Berardi, Stefano. A Constructive Valuation Semantics for Classical Logic. Notre Dame J. Formal Logic 37 (1996), no. 3, 462--482. doi:10.1305/ndjfl/1039886522. https://projecteuclid.org/euclid.ndjfl/1039886522


Export citation

References

  • Barbanera F., and S. Berardi, “Witness Extraction in Classical Logic through Normalization,” pp. 219–246 in Logical Environments, edited by G. Huet and G. Plotkin, Cambridge University Press, Cambridge, 1993. MR 1255117
  • Barbanera, F., and S. Berardi, “A constructive valuation interpretation for classical logic and its use in witness extraction,” pp. 1–23 in Proceedings of Colloquium on Trees in Algebra and Programming (CAAP), LNCS 581, Springer-Verlag, New York, 1992. MR 94h:03115
  • Friedman, H., “Classically and intuitionistically provably recursive functions,” pp. 21–28 in Higher Set Theory, edited by D. S. Scott and G. H. Muller, Lecture Notes in Mathematics, vol. 699, Springer-Verlag, New York, 1978. Zbl 0396.03045 MR 80b:03093
  • Heyting, A., Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie, Springer, Berlin, Reprinted 1974. Zbl 0278.02002 MR 49:8806
  • Kreisel, G., “Mathematical significance of consistency proofs,” The Journal of Symbolic Logic, vol. 23 (1958), pp. 155–182. Zbl 0088.01502 MR 22:6710
  • Kolmogorov, A. N., “Zur Deutung der Intuitionistischen Logik,” Mathematische Zeitschrift, vol. 35 (1932), pp. 58–56. Zbl 0004.00201
  • Martin-Löf, P., “An intuitionistic theory of types: predicative part,” pp. 73–118 in Logic Colloquium 73, edited by H. E. Rose and J. C. Sheperdson, North-Holland, Amsterdam, 1975. Zbl 0334.02016 MR 52:7856
  • Prawitz, D., Natural deduction, a proof theoretical study, Almqvist and Winskell, Stockholm, 1965. Zbl 0173.00205 MR 33:1227
  • Prawitz, D., “Validity and normalizability of proofs in first and second order classical and intuitionistic logic,” pp. 11–36 in Atti del I Congresso Italiano di Logica, Bibliopolis, Napoli, 1981.
  • Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, 1967. Zbl 0155.01102 MR 37:1224