Notre Dame Journal of Formal Logic

An Intensional Schrödinger Logic

Décio Krause and Newton C. A. da Costa

Abstract

We investigate the higher-order modal logic $S_{\omega}I$, which is a variant of the system $S_{\omega}$ presented in our previous work. A semantics for that system, founded on the theory of quasi sets, is outlined. We show how such a semantics, motivated by the very intuitive base of Schrödinger logics, provides an alternative way to formalize some intensional concepts and features which have been used in recent discussions on the logical foundations of quantum mechanics; for example, that some terms like 'electron' have no precise reference and that 'identical' particles cannot be named unambiguously. In the last section, we sketch a classical semantics for quasi set theory.

Article information

Source
Notre Dame J. Formal Logic, Volume 38, Number 2 (1997), 179-194.

Dates
First available in Project Euclid: 12 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039724886

Digital Object Identifier
doi:10.1305/ndjfl/1039724886

Mathematical Reviews number (MathSciNet)
MR1489409

Zentralblatt MATH identifier
0901.03024

Subjects
Primary: 03B60: Other nonclassical logic
Secondary: 03B15: Higher-order logic and type theory 03B30: Foundations of classical theories (including reverse mathematics) [See also 03F35] 03B45: Modal logic (including the logic of norms) {For knowledge and belief, see 03B42; for temporal logic, see 03B44; for provability logic, see also 03F45}

Citation

da Costa, Newton C. A.; Krause, Décio. An Intensional Schrödinger Logic. Notre Dame J. Formal Logic 38 (1997), no. 2, 179--194. doi:10.1305/ndjfl/1039724886. https://projecteuclid.org/euclid.ndjfl/1039724886


Export citation

References

  • Ben-Menahem, Y., “Struggling with realism: Schrödinger's case,” pp. 25–40 in Erwin Schrödinger: Philosophy and the Birth of Quantum Mechanics, edited by M. Bitbol and O. Darrigol, Frontières, Paris, 1992.
  • Bitbol, M., “Esquisses, forme et totalite (Schrödinger et le concept d'objet),” pp. 41–79 in Erwin Schrödinger: Philosophy and the Birth of Quantum Mechanics, edited by M. Bitbol and O. Darrigol, Frontières, Paris, 1992.
  • da Costa, N. C. A., Ensaio Sobre os Fundamentos da Lógica, Hucitec, São Paulo, 2d edition, 1994.
  • da Costa, N. C. A., and D. Krause, “Schrödinger logics,” Studia Logica, vol. 53 (1994), pp. 533–50. MR 95m:03059
  • da Costa, N. C. A., and D. Krause, “Set-theoretical models for quantum systems,” forthcoming in Philosophy of Science in Florence, 1995, edited by M. L. Dalla Chiara, R. Giuntini, and F. Laudisa, Kluwer Academic Press, Dordrecht. Zbl 01714321 MR 1818797
  • da Costa, N. C. A., D. Krause, and S. French, “The Schrödinger problem,” pp. 445–60 in Erwin Schrödinger: Philosophy and the Birth of Quantum Mechanics, edited by M. Bitbol and O. Darrigol, Frontières, Paris, 1992.
  • da Costa, N. C. A., S. French, and D. Krause, “Some remarks on sortal logics and physics,” pp. 159–72 in Calculemos... Matemáticas y Libertad, Homenage a Miguel de Sánchez Mazas, edited by J. Etcheverría, J. de Lorenzo, and L. Peña, Trotta, Madrid, 1996.
  • Dalla Chiara, M. L., “Quantum logic,” pp. 427–69 in Handbook of Philosophical Logic, vol. 3, edited by D. Gabbay and F. D. Guenthner, Reidel, Dordrecht, 1986. Zbl 0875.03084
  • Dalla Chiara, M. L., “An approach to intensional semantics,” Synthese, vol. 73 (1987), pp. 479–96. MR 89a:03031
  • Dalla Chiara, M. L., and G. Toraldo di Francia, “Individuals, kinds and names in physics,” pp. 261–83 in Bridging the Gap: Philosophy, Mathematics, Physics, edited by G. Corsi, et al., Kluwer, Dordrecht, 1993. MR 95a:03018
  • Dalla Chiara, M. L., and G. Toraldo di Francia, “Identity questions from quantum theory,” pp. 39–46 in Physics, Philosophy and the Scientific Community, edited by Gavroglu, et al., Kluwer, Dordrecht, 1995.
  • Dalla Chiara, M. L., and G. Toraldo di Francia, “Quine on physical objects,” preprint, University of Florence, 1993.
  • Dalla Chiara, M. L., R. Giuntini, and D. Krause, “Quasi set theories for microobjects: a comparison,” forthcoming in Interpreting bodies: classical and quantum objects in modern physics, edited by E. Castelani, Princeton University Press, Princeton.
  • French, S., “Identity and individuality in classical and quantum physics,” Australasian Journal of Philosophy, vol. 67 (1989), pp. 432–46.
  • French, S., and M. Redhead, “Quantum physics and the identity of indiscernibles,” British Journal for the Philosophy Science, vol. 39 (1988), pp. 233–46. MR 89k:81009
  • French, S., and D. Krause, “Vague identity and quantum non-individuality,” Analysis, vol. 55 (1995), pp. 20–26.
  • French, S., and D. Krause, “The logic of quanta,” forthcoming in Proceedings of the Boston Colloquium for the Philosophy of Science 1996: A Historical Examination and Philosophical Reflections on the Foundations of Quantum Field Theory, edited by T. L. Cao, Cambridge University Press, Cambridge. Zbl 01618479
  • Gochet, P., and A. Thayse, “Logique intensionalle et langue naturelle,” chapter 2 of, Approche Logique de l'Intelligence Artificielle, vol. 2, Dunod, Paris, 1989.
  • Gonseth, F., Les Mathématiques et la Réalité, A. Blanchard, Paris, 1936. Zbl 0014.19301 MR 50:1803
  • Hilbert, D., “Mathematical problems,” pp. 1–34 in Mathematical Developments Arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics 28, edited by F. E. Browder, American Mathematical Society, Providence, 1976.
  • Gallin, D., Intensional and Higher-Order Modal Logic, North-Holland, Amsterdam, 1975. Zbl 0341.02014 MR 58:21470
  • Krause, D., `A `dialetização' da teoria tradicional da identidade,” Boletim da Sociedade Paranaense de Matemática, vol. 11 (1990), pp. 157–73.
  • Krause, D., “Multisets, quasi sets and Weyl's aggregates,” Journal of Non-Classical Logic, vol. 8 (1991), pp. 9–39. Zbl 0774.03031 MR 94g:03100
  • Krause, D., “On a quasi set theory,” Notre Dame Journal of Formal Logic, vol. 33 (1992), pp. 402–11. Zbl 0774.03032 MR 93f:03033
  • Krause, D., “Axioms for collections of indistinguishable objects,” forthcoming in Logique et Analyse. Zbl 0976.03056 MR 99f:03073
  • Krause, D., and S. French, “A formal framework for quantum non-individuality,” Synthese, vol. 102 (1995), pp. 195–214. Zbl 01503466 MR 96b:03016
  • Krause, D., and S. French, “Opaque predicates and their logic,” forthcoming in Proceedings of the 11th Brazilian Conference on Mathematical Logic. Zbl 0941.81011 MR 2001a:03070
  • Manin, Yu. I., A Course in Mathematical Logic, Springer-Verlag, New York, 1977. Zbl 0383.03002 MR 56:15345
  • Mittelstaed, P., Quantum Logic, Reidel, Dordrecht, 1978. Zbl 0411.03059
  • Mittelstaed, P., “Constituting, naming and identity in quantum logic,” pp. 215–34 in Recent Developments in Quantum Logic, edited by P. Mittelstaed and E. W. Stachow, Bibliographisches Institut: Mannheim, 1985.
  • Post, H., “Individuality and physics,” The Listener, vol. 70 (1963), pp. 534–37.
  • Redhead, M., and P. Teller, “Particles, particle labels and quanta: the toll of unacknowledged metaphysics,” Foundations of Physics, vol. 21 (1991), pp. 43–62. MR 92f:81020
  • Redhead, M., and P. Teller, “Particle labels and the theory of indistinguishable particles in quantum mechanics,” British Journal for the Philosophy of Science, vol. 43 (1992), pp. 201–18. MR 93h:81010
  • Schrödinger, E., Science and Humanism, Cambridge University Press, Cambridge, 1952.
  • Stevenson, L., “A formal theory of sortal quantification,” Notre Dame Journal of Formal Logic, vol. 16 (1975), pp. 185–207. Zbl 0298.02010 MR 51:2858
  • Takeuti, G., “Quantum set theory,” pp. 303–22 in Current Issues in Quantum Logic, edited by E. Beltrametti, et al., Plenum, New York, 1981. MR 84j:03136
  • Teller, P., An Interpretive Introduction to Quantum Field Theory, Princeton University Press, Princeton, 1995. Zbl 0864.00019 MR 96k:81002
  • Weyl, H., Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton, 1949. Zbl 0033.24209 MR 10,670c