Notre Dame Journal of Formal Logic

A Decidable Temporal Logic of Parallelism

Mark Reynolds


In this paper we shall introduce a simple temporal logic suitable for reasoning about the temporal aspects of parallel universes, parallel processes, distributed systems, or multiple agents. We will use a variant of the mosaic method to prove decidability of this logic. We also show that the logic does not have the finite model property. This shows that the mosaic method is sometimes a stronger way of establishing decidability.

Article information

Notre Dame J. Formal Logic, Volume 38, Number 3 (1997), 419-436.

First available in Project Euclid: 12 December 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B45: Modal logic (including the logic of norms) {For knowledge and belief, see 03B42; for temporal logic, see 03B44; for provability logic, see also 03F45}
Secondary: 68Q60: Specification and verification (program logics, model checking, etc.) [See also 03B70]


Reynolds, Mark. A Decidable Temporal Logic of Parallelism. Notre Dame J. Formal Logic 38 (1997), no. 3, 419--436. doi:10.1305/ndjfl/1039700748.

Export citation


  • Belnap, N., and M. Perloff, “Seeing to it that: a canonical form of agentives,” pp. 175–99 in Knowledge Representation and Defeasible Reasonings, edited by H. Kyburg, R. Loui, and G. Carlson, Kluwer Academic Publishers, Dordrecht, 1990. MR 1131296
  • Burgess, J. P., “Logic and time,” The Journal of Symbolic Logic, vol. 44 (1979), pp. 566–82. Zbl 0423.03018 MR 80m:03032
  • Di Maio, M., and A. Zanardo, “Synchronized histories in Prior-Thomason representation of branching time,” pp. 265–82 in Temporal Logic: Proceedings of ICTL 94, edited by D. Gabbay and H. Ohlbach, vol. 827 in LNAI, Springer-Verlag, Berlin, 1994. Zbl 0949.03514 MR 96c:03036
  • Di Maio, M., and A. Zanardo, “A Gabbay-rule free axiomatization of ${T} \times {W}$ validity,” Technical Report, Dipartimento Matematica, University of Padova, 1996. Zbl 0920.03032
  • Fagin, R., J. Halpern, Y. Moses, and M. Vardi, Reasoning about Knowledge, The M.I.T. Press, Cambridge, 1995. Zbl 0839.68095 MR 96i:68075
  • Finger, M., and D. Gabbay, “Combining temporal logic systems,” Notre Dame Journal of Formal Logic, vol. 37 (1996), pp. 204–32. Zbl 0857.03008 MR 97d:03011
  • Finger, M., and D. M. Gabbay, “Adding a temporal dimension to a logic system,” Journal of Logic Language and Information, vol. 1 (1992) pp. 203–33. Zbl 0798.03031 MR 95h:03037
  • Gabbay, D., I. Hodkinson, and M. Reynolds, Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1, Oxford University Press, Oxford, 1994. Zbl 0921.03023 MR 95h:03040
  • Gurevich, Y., and S. Shelah, “The decision problem for branching time logic,” The Journal of Symbolic Logic, vol. 50 (1985) pp. 668–81. Zbl 0584.03006 MR 87c:03033
  • Herwig, B., “Extending partial isomorphisms on finite structures,” Combinatorica, vol. 15 (1995), pp. 365–71. Zbl 0830.05037 MR 97a:03044
  • Hirsch, R., I. Hodkinson, M. Marx, S. Mikulás, and M. Reynolds, “Mosaics and step-by-step,” forthcoming in Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, edited by E. Orlowska. Zbl 0924.03030
  • Hrushovski, E., “Extending partial isomorphisms of graphs,” Combinatorica, vol. 12 (1992), pp. 411–16. Zbl 0767.05053 MR 93m:05089
  • Marx, M., “Complexity of products of modal logics,” Technical Report IR-396, ILLC, University of Amsterdam, 1995. Zbl 0945.03025
  • Marx, M., “Mosaics and cylindric modal logic of dimension 2,” forthcoming in The Proceedings of Advances in Modal Logic, Berlin, 1996. MR 1688519
  • Németi, I., “Free algebras and decidability in algebraic logic,” Ph.D. thesis, Hungarian Academy of Sciences, Budapest, 1986.
  • Pratt, V. R., “Models of program logics,” pp. 115–22 in Proceedings of the Twentieth IEEE Symposium on Foundations of Computer Science, San Juan, 1979.
  • Reif, J., and A. Sistla, “A multiprocess network logic with temporal and spatial modalities,” Journal of Computer and System Sciences, vol. 30 (1985), pp. 41–53. Zbl 0565.68031 MR 87h:68111
  • Reynolds, M., “A decidable logic of parallelism,” Technical Report, King's College, London, 1997. Zbl 0904.03010
  • Segerberg, K., “Two-dimensional modal logic,” Journal of Philosophical Logic, vol. 2 (1973), pp. 77–96. Zbl 0259.02013 MR 54:12488
  • Sistla, A., and S. German, “Reasoning with many processes,” pp. 138–52 in Proceedings of Second IEEE Symposium on Logic in Computer Science, IEEE, Boston, 1987.
  • Thomason, R., Combinations of tense and modality, pp. 135–65 in Handbook of Philosophical Logic, Vol. 2: Extensions of Classical Logic, edited by D. Gabbay and F. Guenthner, Reidel, Dordrecht, 1984. Zbl 0875.03047 MR 844598
  • Thomason, S., “Independent propositional modal logics,” Studia Logica, vol. 39 (1980), pp. 143–44. Zbl 0457.03017 MR 81m:03026
  • Venema, Y., and M. Marx, “A modal logic of relations,” Technical Report IR-396, Faculteit der Wiskunde en Informatica, University of Amsterdam, Amsterdam, 1995. MR 2000j:03037
  • von Kutschera, F., “Causation,” Journal of Philosophical Logic, vol. 22 (1993), pp. 563–88. Zbl 0790.03004 MR 95d:03026
  • von Kutschera, F., “${T} \times {W}$ completeness,” forthcoming in Journal of Philosophical Logic. Zbl 0873.03023 MR 99j:03012
  • Zanardo, A., “A finite axiomatization of the set of strongly valid Ockamist formulas,” Journal of Philosophical Logic, vol. 14 (1985), pp. 447–68. Zbl 0579.03015 MR 87e:03043
  • Zanardo, A., “Branching-time logic with quantification over branches: the point of view of modal logic,” The Journal of Symbolic Logic, vol. 61 (1996), pp. 1–39. Zbl 0858.03021 MR 97h:03031