Notre Dame Journal of Formal Logic

Infima in the Recursively Enumerable Weak Truth Table Degrees

Rich Blaylock, Rod Downey, and Steffen Lempp

Abstract

We show that for every nontrivial r.e. wtt-degree a, there are r.e. wtt-degrees b and c incomparable to a such that the infimum of a and b exists but the infimum of a and c fails to exist. This shows in particular that there are no strongly noncappable r.e. wtt-degrees, in contrast to the situation in the r.e. Turing degrees.

Article information

Source
Notre Dame J. Formal Logic, Volume 38, Number 3 (1997), 406-418.

Dates
First available in Project Euclid: 12 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039700747

Digital Object Identifier
doi:10.1305/ndjfl/1039700747

Mathematical Reviews number (MathSciNet)
MR1624962

Zentralblatt MATH identifier
0909.03038

Subjects
Primary: 03D30: Other degrees and reducibilities

Citation

Blaylock, Rich; Downey, Rod; Lempp, Steffen. Infima in the Recursively Enumerable Weak Truth Table Degrees. Notre Dame J. Formal Logic 38 (1997), no. 3, 406--418. doi:10.1305/ndjfl/1039700747. https://projecteuclid.org/euclid.ndjfl/1039700747


Export citation

References

  • Ambos-Spies, K., “Contiguous r.e. degrees,” pp. 1–37 in Computation and Proof Theory, Lecture Notes in Mathematics, 1104, edited by M. M. Richter et al., Springer-Verlag, New York, 1984. Zbl 0562.03022 MR 86f:03065
  • Ambos-Spies, K., “On pairs of recursively enumerable degrees,” Transactions of the American Mathematical Society, vol. 283 (1984), pp. 507–31. Zbl 0541.03023 MR 85d:03083
  • Ambos-Spies, K., “Cupping and noncapping in the r.e. weak truth table and Turing degrees,” Archiv für mathematische Logik und Grundlagenforschung, vol. 25 (1985), pp. 109–26. Zbl 0619.03032 MR 87j:03058
  • Blaylock, R., Some Results on e-Genericity and Recursively Enumerable Weak Truth Table Degrees, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1991.
  • Cohen, P. F., Weak Truth-Table Reducibility and the Pointwise Ordering of 1-1 Recursive Functions, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1975.
  • Downey, R. G., “$\Delta_2^0$ degrees and transfer theorems,” Illinois Journal of Mathematics, vol. 31 (1987), pp. 419–27. Zbl 0629.03017 MR 89c:03070
  • Fischer, P., “Pairs without infimum in the recursively enumerable weak truth table degrees,” The Journal of Symbolic Logic, vol. 51 (1986), pp. 117–29. Zbl 0587.03030 MR 87g:03044
  • Friedberg, R. M., and H. Rogers, Jr. “Reducibility and completeness for sets of integers,” Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 117–25. Zbl 0108.00602 MR 22:3682
  • Jockusch, Jr., C. G., “Three easy constructions of recursively enumerable sets,” pp. 83–91 in Logic Year 1979–80, Lecture Notes in Mathematics, 859, edited by M. Lerman, J. Schmerl, and R. Soare, Springer-Verlag, New York, 1981. Zbl 0472.03031 MR 83a:03036
  • Lachlan, A. H., “Lower bounds for pairs of recursively enumerable degrees,” Proceedings of the London Mathematical Society, vol. 16 (1966), pp. 537–69. Zbl 0156.00907 MR 34:4126
  • Ladner, R. E., and L. P. Sasso, “The weak truth table degrees of recursively enumerable sets,” Annals of Mathematical Logic, vol. 8 (1975), pp. 429–48. Zbl 0324.02028 MR 52:63
  • Soare, R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987. Zbl 0623.03042 MR 88m:03003
  • Stob, M., “wtt-degrees and T-degrees of recursively enumerable sets,” The Journal of Symbolic Logic, vol. 48 (1983), pp. 921–30.
  • Yates, C. E. M., “A minimal pair of recursively enumerable degrees,” The Journal of Symbolic Logic, vol. 32 (1965), pp. 159–68. Zbl 0143.25402 MR 34:5677