Notre Dame Journal of Formal Logic

Situations in Which Disjunctive Syllogism Can Lead from True Premises to a False Conclusion

S. V. Bhave

Abstract

Disjunctive Syllogism, that is, the inference from 'not-A or B' and 'A', to 'B' can lead from true premises to a false conclusion if each of the sentences 'A' and 'not-A' is a statement of a partial truth such that affirming one of them amounts to denying the other, without each being the contradictory of the other. Such sentences inevitably occur whenever a situation which for its proper precise description needs the use of expressions such as 'most probably true' and so forth, is described (less precisely) by sentences not containing such expressions.

Article information

Source
Notre Dame J. Formal Logic, Volume 38, Number 3 (1997), 398-405.

Dates
First available in Project Euclid: 12 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039700746

Digital Object Identifier
doi:10.1305/ndjfl/1039700746

Mathematical Reviews number (MathSciNet)
MR1624958

Zentralblatt MATH identifier
0910.03003

Subjects
Primary: 03B47: Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics) {For proof-theoretic aspects see 03F52}
Secondary: 03A05: Philosophical and critical {For philosophy of mathematics, see also 00A30}

Citation

Bhave, S. V. Situations in Which Disjunctive Syllogism Can Lead from True Premises to a False Conclusion. Notre Dame J. Formal Logic 38 (1997), no. 3, 398--405. doi:10.1305/ndjfl/1039700746. https://projecteuclid.org/euclid.ndjfl/1039700746


Export citation

References

  • Anderson, A. R., and N. D. Belnap, `Entailment': The Logic of Relevance and Necessity, vol. 1, Princeton University Press, Princeton, 1975. Zbl 0323.02030 MR 53:10542
  • Bhave, S. V., “The liar paradox and many valued logic,” The Philosophical Quarterly, vol. 42 (1992), pp. 465–79. MR 93m:03006
  • Burgess, J. P., “Relevance: a fallacy?” Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 97–104. Zbl 0452.03002 MR 82j:03017
  • Burgess, J. P., “Common sense and `relevance',” Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 41–53. Zbl 0502.03011 MR 84a:03007
  • Friedmann H., and R. K. Meyer, “Wither relevant arithmetic?,” The Journal of Symbolic Logic, vol. 57 (1992), pp. 824–31.
  • Geach, P. T., A. R. Anderson, and N. D. Belnap, Entailment, vol. 1 (1975), reviewed in Philosophy, vol. 52 (1977), p. 495.
  • Haack, S., Philosophy of Logics, Cambridge University, Cambridge, 1978.
  • Lavers, P., “Relevance and disjunctive syllogism,” Notre Dame Journal of Formal Logic, vol. 29 (1988), pp. 34–44. Zbl 0653.03014 MR 89a:03039
  • Martin, E. P., and R. K. Meyer, “Logic on the Australian plan,” Journal of Philosophical Logic, vol. 15 (1986), pp. 305–32. Zbl 0614.03006 MR 87i:03025
  • Mortensen, C., “The validity of disjunctive syllogism is not so easily proved,” Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 35–40. Zbl 0502.03010 MR 84a:03006
  • Mortensen, C., “Reply to Burgess and Read,” Notre Dame Journal of Formal Logic, vol. 27 (1986), pp. 195–200. Zbl 0608.03001 MR 87m:03026
  • Quine, W. V., Methods of Logic, Routledge and Kegan Paul, London, 1952. Zbl 0038.14811 MR 12,233a
  • Read, S., “Burgess on relevance: a fallacy indeed,” Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 473–81. Zbl 0569.03005 MR 85b:03030
  • Read, S., Relevant Logic, Basil Blackwell, Oxford, 1988.
  • Sanford, D. H., `If P, then Q': Conditionals and the Foundations of Reasoning, Routledge, London, 1989.
  • Wolfrom, S., Philosophical Logic, Routledge, London, 1989.