Notre Dame Journal of Formal Logic

Syntax and Semantics of the Logic $\mathcal{L}^\lambda_{\omega\omega}$

Carsten Butz

Abstract

In this paper we study the logic $\mathcal{L}^\lambda_{\omega\omega}$, which is first-order logic extended by quantification over functions (but not over relations). We give the syntax of the logic as well as the semantics in Heyting categories with exponentials. Embedding the generic model of a theory into a Grothendieck topos yields completeness of $\mathcal{L}^\lambda_{\omega\omega}$ with respect to models in Grothendieck toposes, which can be sharpened to completeness with respect to Heyting-valued models. The logic $\mathcal{L}^\lambda_{\omega\omega}$ is the strongest for which Heyting-valued completeness is known. Finally, we relate the logic to locally connected geometric morphisms between toposes.

Article information

Source
Notre Dame J. Formal Logic, Volume 38, Number 3 (1997), 374-384.

Dates
First available in Project Euclid: 12 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039700744

Digital Object Identifier
doi:10.1305/ndjfl/1039700744

Mathematical Reviews number (MathSciNet)
MR1624950

Zentralblatt MATH identifier
0904.03005

Subjects
Primary: 03G30: Categorical logic, topoi [See also 18B25, 18C05, 18C10]
Secondary: 03C75: Other infinitary logic

Citation

Butz, Carsten. Syntax and Semantics of the Logic $\mathcal{L}^\lambda_{\omega\omega}$. Notre Dame J. Formal Logic 38 (1997), no. 3, 374--384. doi:10.1305/ndjfl/1039700744. https://projecteuclid.org/euclid.ndjfl/1039700744


Export citation

References

  • Awodey, S., “Topological representation of the $\lambda$-calculus,” Technical Report, Carnegie Mellon University, Pittsburgh, 1998. Zbl 0942.03015 MR 2001k:03025
  • Awodey, S., and C. Butz, “Topological completeness for higher order logic,” BRICS Report Series, RS-97-21, \Acirc rhus University, \Acirc rhus, 1997. Zbl 0977.03010 MR 2002a:03128
  • Barr, M., and R. Paré, “Molecular toposes,” Journal of Pure and Applied Algebra, vol. 17 (1980), pp. 127–52. Zbl 0436.18002 MR 81d:18010
  • Boileau, A., and A. Joyal, “La logique des topos,” The Journal of Symbolic Logic, vol. 46 (1981), pp. 6–16. Zbl 0544.03035 MR 82a:03063
  • Butz, C., “Logical and cohomological aspects of the space of points of a topos,” Ph.D. Dissertation, Utrecht University, Utrecht, 1996.
  • Butz, C., and P. T. Johnstone, “Classifying toposes for first order theories,” Annals of Pure and Applied Logic, vol. 91 (1998), pp. 33–58. Zbl 0893.03027 MR 99b:03081
  • Butz, C., and I. Moerdijk, “Representing topoi by topological groupoids,” forthcoming in Journal of Pure and Applied Algebra. Zbl 0924.18002 MR 99i:18005
  • Fourman, M. P., and D. S. Scott, “Sheaves and logic,” pp. 302–401 in Applications of Sheaves, Lecture Notes in Mathematics 753, edited by M. P. Fourman, C. J. Mulvey, and D. S. Scott, Springer Verlag, New York, 1979. Zbl 0415.03053 MR 82d:03061
  • Freyd, P., and A. Scedrov, Categories, Allegories. North-Holland, Amsterdam, 1990. Zbl 0698.18002 MR 93c:18001
  • Henkin, L., “Completeness in the theory of types,” The Journal of Symbolic Logic, vol. 15 (1950), pp. 81–91. Zbl 0039.00801 MR 12,70b
  • Johnstone, P. T., “Open maps of toposes,” Manuscripta Mathematica, vol. 31 (1980), pp. 217–47. Zbl 0433.18002 MR 81f:18020
  • Joyal, A., and I. Moerdijk, “Toposes are cohomologically equivalent to spaces,” American Journal of Mathematics, vol. 112 (1990), pp. 87–96. Zbl 0713.18004 MR 90m:18006
  • Kock, A., Synthetic Differential Geometry, Cambridge University Press, Cambridge, 1981. Zbl 0466.51008 MR 83f:51023
  • Lambek, J., and P. J. Scott, Introduction to Higher-Order Categorical Logic, Cambridge University Press, Cambridge, 1983. Zbl 0596.03002 MR 88a:03032
  • Makkai, M., and G. E. Reyes, First Order Categorical Logic, Lecture Notes in Mathematics 611, Springer Verlag, Berlin, 1977. Zbl 0357.18002 MR 58:21600
  • Palmgren, E., “Constructive sheaf semantics,” Mathematical Logic Quarterly, vol. 43 (1997), pp. 321–27. Zbl 0934.03051 MR 98g:03151