Notre Dame Journal of Formal Logic

Another Characterization of Alephs: Decompositions of Hyperspace

John C. Simms

Abstract

A theorem of Sierpinski of 1919 characterized the cardinality of the continuum by means of lines in two orthogonal directions in the plane: CH if and only if there is a subset S of the plane such that every horizontal cross-section of S is countable and every vertical cross-section of S is co-countable. A theorem of Sikorski of 1951 characterizes the cardinality of an arbitrary set by means of hyperplanes in orthogonal directions in finite powers of that set. A theorem of Davies of 1962 characterizes the cardinality of the continuum by means of lines in nonorthogonal directions in the plane, which, by another theorem of Davies of 1962, may be generalized to finite-dimensional Euclidean space. The main results of this paper unify these analogous theorems of Sikorski and Davies by characterizing the cardinality of an arbitrary set by means of hyperplanes in nonorthogonal directions in that set.

Article information

Source
Notre Dame J. Formal Logic, Volume 38, Number 1 (1997), 19-36.

Dates
First available in Project Euclid: 12 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039700694

Digital Object Identifier
doi:10.1305/ndjfl/1039700694

Mathematical Reviews number (MathSciNet)
MR1479366

Zentralblatt MATH identifier
0890.04001

Subjects
Primary: 03E50: Continuum hypothesis and Martin's axiom [See also 03E57]
Secondary: 03E05: Other combinatorial set theory 03E10: Ordinal and cardinal numbers

Citation

Simms, John C. Another Characterization of Alephs: Decompositions of Hyperspace. Notre Dame J. Formal Logic 38 (1997), no. 1, 19--36. doi:10.1305/ndjfl/1039700694. https://projecteuclid.org/euclid.ndjfl/1039700694


Export citation

References

  • Bagemihl, F., “Decompositions of the plane into three sets,” Journal für die reine und angewandte Mathematik, vol. 203 (1960), pp. 209–215. Zbl 0095.04002
  • Brunner, N., “Mathematische Intuition, Kontinuumshypothese und Auswahlaxiom,” Jahrbuch 1988 der Kurt-G ödel-Gesellschaft (1988), pp. 96–101. Zbl 0681.03031 MR 91b:03086
  • Davies, R. O., “The power of the continuum and some propositions of plane geometry,” Fundamenta Mathematicæ, vol. 52 (1963), pp. 277–281. Zbl 0126.02204 MR 27:4762
  • Davies, R. O., “On a problem of Erdős concerning decompositions of the plane,” Proceedings of the Cambridge Philosophical Society, vol. 59 (1963), pp. 33–36. Zbl 0121.25702 MR 26:35
  • Freiling, C., “Axioms of symmetry: throwing darts at the real number line,” The Journal of Symbolic Logic, vol. 51 (1986), pp. 190–200. Zbl 0619.03035 MR 87f:03148
  • Sierpiński, W., “O pewnem twierdzeniu równowaznem hipotezie continuum–-Sur un théorème équivalent à l'hypothèse du continuu ($2^{\aleph_{0}} = \aleph_{1}$),” Bulletin International de l'Académie Polonaise des Sciences et de Lettres, Classe des Sciences Mathématiques et Naturelles, Série A: Sciences Mathématiques (1919), pp. 1–3.
  • Sikorski, R., “A characterization of alephs,” Fundamenta Mathematicæ, vol. 38 (1951), pp. 18–22. Zbl 0044.27303 MR 14,26d
  • Simms, J. C., “Sierpiński's theorem,” Simon Stevin, vol. 65 (1991), pp. 69–163. Zbl 0726.01013 MR 92j:01052
  • Simms, J C., “Traditional Cavalieri principles applied to the modern notion of area,” Journal of Philosophical Logic, vol. 18 (1989), pp. 275–314. Zbl 0688.03034 MR 90j:03095
  • Simms, J. C., “Covering hyperspace with hypercurves,” Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 37 (1991), pp. 393–400.