Notre Dame Journal of Formal Logic

A Variant of Thomason's First-Order Logic CF Based on Situations

Peter Mott and Xuegang Wang

Abstract

In this paper, we define a first-order logic CFʹ with strong negation and bounded static quantifiers, which is a variant of Thomason's logic CF. For the logic CFʹ, the usual Kripke formal semantics is defined based on situations, and a sound and complete axiomatic system is established based on the axiomatic systems of constructive logics with strong negation and Thomason's completeness proof techniques. With the use of bounded quantifiers, CFʹ allows the domain of quantification to be empty and allows for nondenoting constants. CFʹ is intended as a fragment of a logic for situation theory. Thus the connection between CFʹ and infon logic is discussed.

Article information

Source
Notre Dame J. Formal Logic, Volume 39, Number 1 (1998), 74-93.

Dates
First available in Project Euclid: 7 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039293021

Digital Object Identifier
doi:10.1305/ndjfl/1039293021

Mathematical Reviews number (MathSciNet)
MR1671742

Zentralblatt MATH identifier
0967.03022

Subjects
Primary: 03B60: Other nonclassical logic
Secondary: 68T27: Logic in artificial intelligence

Citation

Wang, Xuegang; Mott, Peter. A Variant of Thomason's First-Order Logic CF Based on Situations. Notre Dame J. Formal Logic 39 (1998), no. 1, 74--93. doi:10.1305/ndjfl/1039293021. https://projecteuclid.org/euclid.ndjfl/1039293021


Export citation

References

  • Abiteboul, S., R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Reading, 1995. Zbl 0848.68031
  • Akama, S., “Constructive predicate logic with strong negation and model theory,” Notre Dame Journal of Formal Logic, vol. 29 (1988), pp. 18–27. Zbl 0647.03005 MR 89k:03026
  • Alferes, J. J., and L. M. Pereira, Reasoning with Logic Programming, Lecture Notes in Artificial Intelligence 1111, Springer-Verlag, Berlin, 1996. MR 98k:68031
  • Almukdad, A., and D. Nelson, “Constructible falsity and inexact predicates,” The Journal of Symbolic Logic, vol. 49 (1984), pp. 231–33. Zbl 0575.03016 MR 86c:03020
  • Barwise, J., The Situation in Logic, CSLI Lecture Notes 17, CSLI, Stanford, 1989. Zbl 0664.03003 MR 90g:03033
  • Barwise, J., and J. Etchemendy, The Liar: An Essay on Truth and Circularity, Oxford University Press, Oxford, 1987. Zbl 0678.03001 MR 88k:03009
  • Barwise, J., and J. Etchemendy, “Information, infons, and inference,” pp. 33–78 in Situation Theory and Its Applications, vol. 1, edited by R. Cooper, K. Mukai, and J. Perry, CSLI Lecture Notes 22, CSLI, Stanford, 1990.
  • Barwise, J., and J. Perry, Situations and Attitudes, The MIT Press, Cambridge, 1983. Zbl 0946.03007 MR 2001h:03051
  • Bencivenga, E., “Free logics,” pp. 373–426 in Alternatives in Classical Logic, vol. 3, Handbook of Philosophical Logic, edited by D. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1985. Zbl 0875.03020
  • Devlin, K., Logic and Information, Cambridge University Press, Cambridge, 1991. Zbl 0732.03001 MR 93c:68094
  • Dummett, M., Elements of Intuitionism, Oxford Logic Guides, Clarendon Press, Oxford, 1977. Zbl 0358.02032 MR 58:16194
  • Fernando, T., “On the logic of situation theory,” pp. 97–116 in Situation Theory and Its Applications, vol. 1, edited by R. Cooper, K. Mukai, and J. Perry, CSLI Lecture Notes 22, CSLI, Stanford, 1990. MR 1260728
  • Fitch, F. B., Symbolic Logic, Ronald Press, New York, 1952. Zbl 0049.00504 MR 15,592n
  • Frege, G., “Begriffsschrift (Chapter I),” pp. 1–20 in Translations from the Philosophical Writings of Gottlob Frege, edited by P. Geach and M. Black, Basil Blackwell, Oxford, 1952.
  • Garson, J. W., “Quantification in modal logic,” pp. 249–307 in Extensions of Classical Logic, vol. 2, Handbook of Philosophical Logic, edited by D. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1985. Zbl 0875.03050 MR 844600
  • Gentzen, G., “Investigations into logical deduction,” pp. 68–131 in The Collected Papers of Gerhard Gentzen, edited by M. E. Szabo, North-Holland, Amsterdam, 1969.
  • Gurevich, Y., “Intuitionistic logic with strong negation,” Studia Logica, vol. 36 (1977), pp. 49–59. Zbl 0366.02015 MR 58:160
  • Lopez-Escobar, E. G. K., “Refutability and elementary number theory,” Indagationes Mathematicae, vol. 34 (1972), pp. 362–74. Zbl 0262.02027 MR 48:10772
  • Markov, A. A., “Constructive logic” (in Russian), Uspekhi Matematičeskih Nauk, vol. 5 (1950), pp. 187–88.
  • Mott, P. L., “Intuitionistic logic with a `definitely' operator,” Research Report 97.05, School of Computer Studies, University of Leeds, 1997.
  • Nelson, D., “Constructible falsity,” The Journal of Symbolic Logic, vol. 14 (1949), pp. 16–26. Zbl 0033.24304 MR 10,669a
  • Rasiowa, H., “${\cal N}$-lattices and constructive logic with strong negation,” Fundamenta Mathematicae, vol. 46 (1958), pp. 61–80. Zbl 0087.00905 MR 20:5137
  • Reiter, R., “On closed world databases,” pp. 55–76 in Logic and Databases, edited by H. Gallaire and J. Minker, Plenum Press, New York, 1978.
  • Routley, R., “Semantical analyses of propositional systems of Fitch and Nelson,” Studia Logica, vol. 33 (1974), pp. 283–98. Zbl 0356.02022 MR 51:70
  • Thomason, R. H., “A semantical analysis of constructible falsity,” Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 247–57.
  • Troelstra, A. S., Choice Sequences: A Chapter of Intutitionistic Mathematics, Oxford Logic Guides, Clarendon Press, Oxford, 1977. Zbl 0355.02026 MR 57:15979
  • Troelstra, A. S., and D. van Dalen, Constructivism in Mathematics: An Introduction, vol. 1, North-Holland, Amsterdam, 1988. Zbl 0653.03040 MR 90e:03002a
  • van Dalen, D. “Intuitionistic logic”, pp. 225–339 in Alternatives in Classical Logic, vol. 3, Handbook of Philosophical Logic, edited by D. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1985. Zbl 0875.03038
  • Veltman, F., “Defaults in update semantics,” Journal of Philosophical Logic, vol. 25 (1996), pp. 221–61. Zbl 0860.03025 MR 97d:68220
  • Vorob'ev, N. N., “Constructive propositional calculus with strong negation” (in Russian), Doklady Akademii Nauk SSSR, vol. 85 (1952), pp. 465–68.
  • Wagner, G., “Logic programming with strong negation and inexact predicates,” Journal of Logic and Computation, vol. 1 (1991), pp. 835–59. Zbl 0738.68018 MR 1165249
  • Wansing, H., Logic of Information Structures, Lecture Notes in Artificial Intelligence 681, Springer-Verlag, Berlin, 1993. Zbl 0788.03001 MR 95b:03035