Notre Dame Journal of Formal Logic

Predicative Logic and Formal Arithmetic

John P. Burgess and A. P. Hazen

Abstract

After a summary of earlier work it is shown that elementary or Kalmar arithmetic can be interpreted within the system of Russell's Principia Mathematica with the axiom of infinity but without the axiom of reducibility.

Article information

Source
Notre Dame J. Formal Logic, Volume 39, Number 1 (1998), 1-17.

Dates
First available in Project Euclid: 7 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039293018

Digital Object Identifier
doi:10.1305/ndjfl/1039293018

Mathematical Reviews number (MathSciNet)
MR1671801

Zentralblatt MATH identifier
0967.03048

Subjects
Primary: 03B15: Higher-order logic and type theory
Secondary: 03F30: First-order arithmetic and fragments

Citation

Burgess, John P.; Hazen, A. P. Predicative Logic and Formal Arithmetic. Notre Dame J. Formal Logic 39 (1998), no. 1, 1--17. doi:10.1305/ndjfl/1039293018. https://projecteuclid.org/euclid.ndjfl/1039293018


Export citation