Notre Dame Journal of Formal Logic

A Supersimple Nonlow Theory

Enrique Casanovas and Byunghan Kim


This paper presents an example of a supersimple nonlow theory and characterizes its independence relation.

Article information

Notre Dame J. Formal Logic, Volume 39, Number 4 (1998), 507-518.

First available in Project Euclid: 5 December 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03C45: Classification theory, stability and related concepts [See also 03C48]


Casanovas, Enrique; Kim, Byunghan. A Supersimple Nonlow Theory. Notre Dame J. Formal Logic 39 (1998), no. 4, 507--518. doi:10.1305/ndjfl/1039118865.

Export citation


  • Buechler, S., “Lascar strong types in some simple theories,” The Journal of Symbolic Logic, vol. 64 (1999), pp. 817–24. Zbl 0930.03035 MR 2001k:03071
  • Buechler, S., A. Pillay, and F. O. Wagner, “Supersimple theories,” forthcoming in Journal of the American Mathematical Society. Zbl 0963.03057 MR 2001j:03065
  • Casanovas, E., “The number of types in simple theories,” Annals of Pure and Applied Logic, vol. 98 (1999), pp. 69–86. Zbl 0939.03039 MR 2000f:03102
  • Kim, B., “Simple first order theories,” Ph.D. thesis, University of Notre Dame, Notre Dame, 1996.
  • Kim, B., “Forking in simple unstable theories,” Journal of the London Mathematical Society, vol. 57 (1998), pp. 257–67. Zbl 0922.03048 MR 2000a:03052
  • Kim, B., “A note on Lascar strong types in simple theories,” The Journal of Symbolic Logic, vol. 63 (1998), pp. 926–36. Zbl 0961.03030 MR 2000a:03053
  • Kim, B., and A. Pillay, “Simple theories,” Annals of Pure and Applied Logic, vol. 88 (1997), pp. 149–64. Zbl 0897.03036 MR 99b:03049
  • Kunen, K., Set Theory, an Introduction to Independence Proofs, North-Holland, Amsterdam, 1980. Zbl 0443.03021 MR 82f:03001