Notre Dame Journal of Formal Logic

Rules and Arithmetics

Albert Visser

Abstract

This paper is concerned with the logical structure of arithmetical theories. We survey results concerning logics and admissible rules of constructive arithmetical theories. We prove a new theorem: the admissible propositional rules of Heyting Arithmetic are the same as the admissible propositional rules of Intuitionistic Propositional Logic. We provide some further insights concerning predicate logical admissible rules for arithmetical theories

Article information

Source
Notre Dame J. Formal Logic, Volume 40, Number 1 (1999), 116-140.

Dates
First available in Project Euclid: 5 December 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1039096308

Digital Object Identifier
doi:10.1305/ndjfl/1039096308

Mathematical Reviews number (MathSciNet)
MR1811206

Zentralblatt MATH identifier
0968.03071

Subjects
Primary: 03F50: Metamathematics of constructive systems
Secondary: 03F30: First-order arithmetic and fragments

Citation

Visser, Albert. Rules and Arithmetics. Notre Dame J. Formal Logic 40 (1999), no. 1, 116--140. doi:10.1305/ndjfl/1039096308. https://projecteuclid.org/euclid.ndjfl/1039096308


Export citation

References

  • Boolos, G., The Logic of Provability, Cambridge University Press, Cambridge, 1993. Zbl 0891.03004 MR 95c:03038
  • de Jongh, D.H.J., Investigations on the Intuitionistic Propositional Calculus, Ph.D. thesis, University of Wisconsin, Madison, 1968.
  • de Jongh, D.H.J., “The maximality of the intuitionistic predicate calculus with respect to Heyting's Arithmetic,” The Journal of Symbolic Logic, vol. 36 (1970), p. 606.
  • de Jongh, D.H.J., and C. Smoryński, “Kripke models and the intuitionistic theory of species,” Annals of Mathematical Logic, vol. 9 (1976), pp. 157–86. Zbl 0317.02037 MR 53:5266
  • de Jongh, D.H.J., and A. Visser, “Embeddings of Heyting algebras,” pp. 187– 213 in Logic: From Foundations to Applications, edited by W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, Clarendon Press, Oxford, 1996. Zbl 0857.03041 MR 98h:03079
  • Friedman, H., “Some applications of Kleene's methods for intuitionistic systems,” pp. 113–70 in Cambridge Summerschool in Mathematical Logic, edited by A.R.D. Mathias and H. Rogers, Springer-Verlag, Berlin, 1973. Zbl 0272.02038 MR 51:12486
  • Gavrilenko, Yu. V., “Recursive realizability from the intuitionistic point of view,” Soviet Mathematical Doklady, vol. 23 (1981), pp. 9–14. Zbl 0467.03055
  • Ghilardi, S., “Unification in intuitionistic logic,” The Journal of Symbolic Logic, vol. 64 (1999), pp. 859–80. Zbl 0930.03009 MR 2001g:03020
  • Ghilardi, S., and M. Zawadowski, “A sheaf representation and duality for finitely presented Heyting algebras,” The Journal of Symbolic Logic, vol. 60 (1995), pp. 911–39. Zbl 0837.03047 MR 96i:03063
  • Hájek, P., and P. Pudlák, Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic, Springer, Berlin, 1991. Zbl 0781.03047 MR 94d:03001
  • Kalsbeek, M.B., An Orey sentence for predicative arithmetic, Technical Report X-89-01, ITLI, University of Amsterdam, Amsterdam, 1989.
  • Leivant, D., Absoluteness in Intuitionistic Logic, vol. 73, Mathematical Centre Tract, Amsterdam, 1975.
  • McCarthy, D. C., “Incompleteness in intuitionistic metamathematics,” The Notre Dame Journal of Formal Logic, vol. 32 (1991), pp. 323–58.
  • Montagna, F., and A. Mancini, “A minimal predicative set theory,” The Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 186–203. Zbl 0816.03023 MR 95h:03117
  • Pitts, A., “On an interpretation of second order quantification in first order intuitionistic propositional logic,” The Journal of Symbolic Logic, vol. 57 (1992), pp. 33–52. Zbl 0763.03009 MR 93h:03009
  • Plisko, V. E., “The nonarithmeticity of the class of realizable formulas,” Mathematical Izvestya of the USSR, vol. 11 (1977), pp. 453–71. Zbl 0382.03043
  • Plisko, V. E., “Some variants of the notion of realizability for predicate formulas,” Mathematical Izvestya of the USSR, vol. 12 (1978), pp. 588–604. Zbl 0414.03038 MR 80b:03035
  • Plisko, V. E., “Absolute realizability of predicate formulas,” Mathematical Izvestya of the USSR, vol. 22 (1983), pp. 291–308. Zbl 0554.03029 MR 85f:03063
  • Plisko, V. E., “Modified realizability and predicate logic,” Abstracts of the All Union Conference in Mathematical Logic, Alma Ata, in Russian, 1990. Zbl 0912.03027 MR 99h:03037
  • Plisko, V. E., “Constructive formalization of the Tennenbaum Theorem,” Mathematical Notes, pp. 950–57, 1991. Translated from Matematicheskie Zametki, vol. 48 (1990), pp. 108–18. Zbl 0727.03037
  • Plisko, V. E., “On arithmetic complexity of certain constructive logics,” Mathematical Notes, pp. 701–709, 1993. Translated from Matematicheskie Zametki, vol. 52 (1992), pp. 94–104. Zbl 0787.03055
  • Pudlák, P., “Cuts, consistency statements and interpretations,” The Journal of Symbolic Logic, vol. 50 (1985), pp. 423–41. Zbl 0569.03024 MR 87m:03087
  • Rose, G. F., “Propositional calculus and realizability,” Transactions of the American Mathematical Society, vol. 61 (1953), pp. 1–19. Zbl 0053.19901 MR 15,1a
  • Rybakov, V. V., “Admissibility of logical inference rules,” Studies in Logic, Elsevier, Amsterdam, 1997. Zbl 0872.03002 MR 98i:03035
  • Smoryński, C., “Applications of Kripke models,” pp. 324–91 in Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Springer Lecture Notes 344, edited by A. S. Troelstra, Springer, Berlin, 1973. MR 56:2795
  • Smoryński, C., Self-Reference and Modal Logic, Universitext, Springer, New York, 1985. Zbl 0596.03001 MR 88d:03001
  • Tarski, A., A. Mostowski, and R. M. Robinson. Undecidable Theories, North-Holland, Amsterdam, 1953. Zbl 0053.00401 MR 15,384h
  • Troelstra, A. S., and D. van Dalen, “Constructivism in Mathematics,” vol. 1, Studies in Logic and the Foundations of Mathematics, vol. 121, North-Holland, Amsterdam, 1988. Zbl 0653.03040 MR 90e:03002a
  • Troelstra, A. S., and D. van Dalen, “Constructivism in Mathematics,” vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 123, North-Holland, Amsterdam, 1988. Zbl 0661.03047 MR 90e:03002b
  • van Oosten, J., Exercises in Realizability, Ph.D. thesis, Department of Mathematics and Computer Science, University of Amsterdam, Amsterdam, 1991.
  • van Oosten, J., “A semantical proof of de Jongh's Theorem,” Archive for Mathematical Logic, vol. 31 (1991), pp. 105–14. Zbl 0781.03049 MR 93b:03107
  • Visser, A., Aspects of diagonalization and provability, Ph.D. thesis, Department of Philosophy, Utrecht University, Utrecht, 1981.
  • Visser, A., “On the completeness principle,” Annals of Mathematical Logic, vol. 22 (1982), pp. 263–95. Zbl 0505.03026 MR 84h:03130
  • Visser, A., “Evaluation, provably deductive equivalence in Heyting's Arithmetic of substitution instances of propositional formulas,” Technical Report LGPS 4, Department of Philosophy, Utrecht University, Utrecht, 1985.
  • Visser, A., “The formalization of interpretability,” Studia Logica, vol. 51 (1991), pp. 81–105. Zbl 0744.03023 MR 93f:03009
  • Visser, A., “The unprovability of small inconsistency,” Archive for Mathematical Logic, vol. 32 (1993), pp. 275–98. Zbl 0795.03080 MR 94c:03073
  • Visser, A., Propositional combinations of $\Sigma$-sentences in Heyting's Arithmetic, Logic Group Preprint Series 117, Department of Philosophy, Utrecht University, Utrecht, 1994.
  • Visser, A., “Uniform interpolation and layered bisimulation,” pp. 139–64 in G ödel '96, Logical Foundations of Mathematics, Computer Science and Physics–-Kurt G ödel's Legacy, edited by P. Hájek, Springer, Berlin, 1996. Zbl 0854.03026 MR 98g:03026
  • Visser, A., “An overview of interpretability logic,” pp. 307–59 in Advances in Modal Logic, vol. 1, CSLI Lecture Notes, no. 87, edited by M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, CSLI, Stanford, 1998. Zbl 0915.03020 MR 1 688 529
  • Visser, A., J. van Benthem, D. de Jongh, and G. Renardel de Lavalette, “NNIL, a study in intuitionistic propositional logic,” pp. 289–326 in Modal Logic and Process Algebra, a Bisimulation Perspective, CSLI Lecture Notes, no. 53, edited by A. Ponse, M. de Rijke, and Y. Venema, CSLI, Stanford, 1995. MR 97m:03019
  • Wilkie, A., and J. B. Paris, “On the scheme of induction for bounded arithmetic formulas,” Annals of Pure and Applied Logic, vol. 35 (1987), pp. 261–302.
  • Yavorsky, R. E., “Logical schemes for first-order theories,” Springer LNCS (Yaroslavl '97 volume), vol. 1234, (1997), pp. 410–18. Zbl 0888.03018 MR 98k:03016