Notre Dame Journal of Formal Logic

An Intriguing Logic with Two Implicational Connectives

Lloyd Humberstone


Spinks introduces implicative BCSK-algebras, expanding implicative BCK-algebras with an additional binary operation. Subdirectly irreducible implicative BCSK-algebras can be viewed as flat posets with two operations coinciding only in the 1- and 2-element cases, each, in the latter case, giving the two-valued implication truth-function. We introduce the resulting logic (for the general case) in terms of matrix methodology in Section 1, showing how to reformulate the matrix semantics as a Kripke-style possible worlds semantics, thereby displaying the distinction between the two implications in the more familiar language of modal logic. In Sections 2 and 3 we study, from this perspective, the fragments obtained by taking the two implications separately, and--after a digression (in Section 4) on the intuitionistic analogue of the material in Section 3--consider them together in Section 5, closing with a discussion in Section 6 of issues in the theory of logical rules. Some material is treated in three appendices to prevent Sections 1-6 from becoming overly distended.

Article information

Notre Dame J. Formal Logic, Volume 41, Number 1 (2000), 1-40.

First available in Project Euclid: 29 July 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B45: Modal logic (including the logic of norms) {For knowledge and belief, see 03B42; for temporal logic, see 03B44; for provability logic, see also 03F45}
Secondary: 03B50: Many-valued logic

implicational BCK-algebras modal logic rules


Humberstone, Lloyd. An Intriguing Logic with Two Implicational Connectives. Notre Dame J. Formal Logic 41 (2000), no. 1, 1--40. doi:10.1305/ndjfl/1027953481.

Export citation


  • Abbott, J. C., "Semi-B"oolean algebra, Matematichki Vesnik, vol. 4 (19) (1967), pp. 177–98.
  • Blamey, S., and L. Humberstone, "A perspective on modal sequent logic", Kyoto University. Research Institute for Mathematical Sciences Publications, vol. 27 (1991), pp. 763–82.
  • Blok, W. J., and D. Pigozzi, "Algebraizable logics", Memoirs of the American Mathematical Society, vol. 77 (1989), no. 396.
  • Bunder, M. W., "Simpler axioms for BC"K algebras and the connection between the axioms and the combinators $\textbf{B},\textbf{C}$ and $\textbf{K}$, Mathematica Japonica, vol. 26 (1981), pp. 415–18.
  • Celani, S., and R. Jansana, "A new semantics for positive modal logic", Notre Dame Journal of Formal Logic, vol. 38 (1997), pp. 1–18.
  • Chagrov, A., and M. Zakharyaschev, Modal Logic, The Clarendon Press, New York, 1997.
  • Chellas, B. F., Modal Logic. An Introduction, Cambridge University Press, Cambridge, 1980.
  • Czermak, J., "Embeddings of classical logic in S4", Studia Logica, vol. 34 (1975), pp. 87–100.
  • Czermak, J., "Embeddings of classical logic in S4". II, Studia Logica, vol. 35 (1976), pp. 257–71.
  • Dunn, J. M., "Positive modal logic", Studia Logica, vol. 55 (1995), pp. 301–17.
  • Fitting, M., "An embedding of classical logic in S4", The Journal of Symbolic Logic, vol. 35 (1970), pp. 529–34.
  • Fitting, M., Proof Methods for Modal and Intuitionistic Logics, D. Reidel Publishing, Dordrecht, 1983.
  • Gabbay, D. M., Semantical Investigations in Heyting's Intuitionistic Logic, D. Reidel Publishing, Dordrecht, 1981.
  • G ödel, K., "On the intuitionistic propositional calculus", pp. 223–25 in Kurt G ödel: Collected Works. Volume 1, edited by S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort, Oxford University Press, Oxford, 1986.
  • Hacking, I., "What is strict implication?", The Journal of Symbolic Logic, vol. 28 (1963), pp. 51–71.
  • Humberstone, I. L., "Monadic representability of certain binary relations", Bulletin of the Australian Mathematical Society, vol. 29 (1984), pp. 365–76.
  • Humberstone, I. L., "Expressive power and semantic completeness: B"oolean connectives in modal logic, Studia Logica, vol. 49 (1990), pp. 197–214.
  • Humberstone, I. L., "A study of some `separated' conditions on binary relations", Theoria, vol. 57 (1991), pp. 1–16.
  • Humberstone, I. L., "The logic of non-contingency", Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 214–29.
  • Humberstone, L., "Valuational semantics of rule derivability", Journal of Philosophical Logic, vol. 25 (1996), pp. 451–61.
  • Kabziński, J. K., "Quasivarieties for B"CK-logic, Polish Academy of Sciences. Institute of Philosophy and Sociology. Bulletin of the Section of Logic, vol. 12 (1983), pp. 130–33.
  • Kuhn, S. T., "Minimal non-contingency logic", Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 230–34.
  • Lemmon, E. J., C. A. Meredith, D. Meredith, A. N. Prior, and I. Thomas, "Calculi of pure strict implication", pp. 215–50 in Philosophical Logic, edited by J. W. Davis, D. J. Hockney, and W. K. Wilson, Reidel, Dordrecht, 1969.
  • Łukasiewicz, J., "A system of modal logic", Journal of Computing Systems, vol. 1 (1953), pp. 111–49.
  • Porte, J., "The deducibilities of S5", Journal of Philosophical Logic, vol. 10 (1981), pp. 409–22.
  • Sambin, G., "Subdirectly irreducible modal algebras and initial frames", Studia Logica, vol. 62 (1999), pp. 269–82. Selected papers in honour of Ettore Casari.
  • Scott, D., "Completeness and axiomatizability in many-valued logic", pp. 411–35 in Proceedings of the Tarski Symposium, American Mathematical Society, Providence, 1974.
  • Scott, D. S., "Rules and derived rules", pp. 147–61 in Logical Theory and Semantic Analysis, edited by S. Stenlund, Reidel, Dordrecht, 1974.
  • Scroggs, S. J., "Extensions of the L"ewis system S5, The Journal of Symbolic Logic, vol. 16 (1951), pp. 112–20.
  • Segerberg, K., "Propositional logics related to H"eyting's and Johansson's, Theoria, vol. 34 (1968), pp. 26–61.
  • Smiley, T., "Relative necessity", The Journal of Symbolic Logic, vol. 28 (1963), pp. 113–34.
  • Spinks, M., A Non-Classical Extension of Implicative Propositional Logic, delivered to the annual conference of the Australasian Association for Logic, University of Melbourne, 1999.
  • Spinks, M., Contributions to the Theory of Pre-BCK-Algebras, Ph.D. thesis, GCSIT Research, Monash University, 2001.
  • van Benthem, J., Modal Logic and Classical Logic, Bibliopolis, Naples, 1983.
  • van Benthem, J., "Correspondence theory", pp. 167–247 in Handbook of Philosophical Logic. Volume II, Reidel, Dordrecht, 1984.
  • Williams, C. J. F., What is Identity?, Clarendon Press, Oxford, 1989.
  • Wójcicki, R., Theory of Logical Calculi, Kluwer, Dordrecht, 1988.
  • Wójcicki, R., "Matrix approach in methodology of sentential calculi", Studia Logica, vol. 32 (1973), pp. 7–39.
  • Yutani, H., "Quasi-commutative BC"K-algebras and congruence relations, Mathematics Seminar Notes. Kobe University, vol. 5 (1977), pp. 469–80.