Notre Dame Journal of Formal Logic

Limits for Paraconsistent Calculi

Walter A. Carnielli and João Marcos


This paper discusses how to define logics as deductive limits of sequences of other logics. The case of da Costa's hierarchy of increasingly weaker paraconsistent calculi, known as $ \mathcal {C}$n, 1 $ \leq$ n $ \leq$ $ \omega$, is carefully studied. The calculus $ \mathcal {C}$$\scriptstyle \omega$, in particular, constitutes no more than a lower deductive bound to this hierarchy and differs considerably from its companions. A long standing problem in the literature (open for more than 35 years) is to define the deductive limit to this hierarchy, that is, its greatest lower deductive bound. The calculus $ \mathcal {C}$min, stronger than $ \mathcal {C}$$\scriptstyle \omega$, is first presented as a step toward this limit. As an alternative to the bivaluation semantics of $ \mathcal {C}$min presented thereupon, possible-translations semantics are then introduced and suggested as the standard technique both to give this calculus a more reasonable semantics and to derive some interesting properties about it. Possible-translations semantics are then used to provide both a semantics and a decision procedure for $ \mathcal {C}$Lim, the real deductive limit of da Costa's hierarchy. Possible-translations semantics also make it possible to characterize a precise sense of duality: as an example, $ \mathcal {D}$min is proposed as the dual to $ \mathcal {C}$min.

Article information

Notre Dame J. Formal Logic Volume 40, Number 3 (1999), 375-390.

First available in Project Euclid: 28 May 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B53: Paraconsistent logics


Carnielli, Walter A.; Marcos, João. Limits for Paraconsistent Calculi. Notre Dame J. Formal Logic 40 (1999), no. 3, 375--390. doi:10.1305/ndjfl/1022615617.

Export citation


  • [1] Alves, E. H., Logic and Inconsistency: A Study of the Calculi $\mathcalC_n, 1\leq n\leq \omega$ (in Portuguese), thesis, State University of São Paulo, FFLCH, 1976.
  • [2] Alves, E. H., ``Paraconsistent logic and model theory,'' Studia Logica, vol. 43 (1984), pp. 17--32.
  • [3] Arruda, A. I., ``Remarques sur les systèmes $\mathcalC_n$,'' Comptes Rendus de l'Academie de Sciences de Paris, Séries A-B (1975) t. 280, pp. 1253--6.
  • [4] Baaz, M., ``Kripke-type semantics for da Costa's paraconsistent logic $\mathcalC_\omega$,'' The Notre Dame Journal of Formal Logic, vol. 27 (1986), pp. 523--27.
  • [5] Blackburn, P., and M. de Rijke, ``Zooming in, zooming out,'' The Journal of Logic, Language, and Information, vol. 6 (1997), pp. 5--31.
  • [6] Carnielli, W. A., ``Many-valued logics and plausible reasoning,'' pp. 328--35 in Proceedings of the Twentieth International Congress on Many-Valued Logics, IEEE Computer Society, University of Charlotte, North Carolina, 1990.
  • [7] Carnielli, W. A., ``Possible-translations semantics for paraconsistent logics,'' pp. 149--63 in Frontiers in Paraconsistent Logic: Proceedings of the First World Congress on Paraconsistency, Ghent, 1998, edited by D. Batens et al., King's College Publications, 2000.
  • [8] Carnielli, W. A., and M. E. Coniglio, ``A categorial approach to the combination of logics,'' Manuscrito, vol. 22 (1999), pp. 69--94.
  • [9] Carnielli, W. A., and I. M. L. D'Ottaviano, ``Translations between logical systems: a manifesto,'' Logique & Analyse, vol. 157 (1997), pp. 67--81.
  • [10] Carnielli, W. A., and M. Lima-Marques, ``Society semantics and multiple-valued logics,'' pp. 33--52 in Advances in Contemporary Logic and Computer Science: Proceedings of the Eleventh Brazilian Conference on Mathematical Logic, edited by W. A. Carnielli and I. M. L. D'Ottaviano, Contemporary Mathematics, vol. 235, American Mathematical Society, 1999.
  • [11] Carnielli, W. A., and J. Marcos, ``A taxonomy of C-systems,'' forthcoming in Paraconsistency: The Logical Way to the Inconsistent, Proceedings of the Second World Congress on Paraconsistency (WCP 2000), edited by W. A. Carnielli, M. E. Coniglio, and I. M. L. D'Ottaviano, Marcel Dekker, New York, 2001.
  • [12] Carnielli, W. A., and J. Marcos, ``Possible-translations semantics and dual logics,'' forthcoming in Soft Computing.
  • [13] da Costa, N. C. A., Inconsistent Formal Systems (in Portuguese), thesis, Universidade Federal do Paraná, 1963. Curitiba: Editora UFPR, 1993.
  • [14] da Costa, N. C. A., ``On the theory of inconsistent formal systems,'' Notre Dame Journal of Formal Logic, vol. 15 (1974), pp. 497--510.
  • [15] da Costa, N. C. A., and E. H. Alves, ``A semantical analysis of the calculi $\mathcalC_n$,'' Notre Dame Journal of Formal Logic, vol. 18 (1977), pp. 621--30.
  • [16] Jaśkowski, S., ``Propositional calculus for contradictory deductive systems,'' Studia Logica, vol. 24 (1969), pp. 143--57.
  • [17] Loparić, A., ``A semantical study of some propositional calculi,'' The Journal of Non-Classical Logic, vol. 3 (1986), pp. 73--95.
  • [18] Loparić, A., and E. H. Alves, ``The semantics of the systems $\mathcalC_n$ of da Costa,'' pp. 161--72 in Proceedings of the Third Brazilian Conference on Mathematical Logic, edited by A. I. Arruda, N. C. A. da Costa, and A. M. Sette, Sociedade Brasileira de Lógica, São Paulo, 1980.
  • [19] Marcos, J., Possible-Translations Semantics (in Portuguese), thesis, State University of Campinas, IFCH, 1999, (
  • [20] Mortensen, C., ``Paraconsistency and $\mathcalC_n$,'' pp. 289--305 in Paraconsistent Logic: Essays on the Inconsistent, edited by G. Priest, R. Routley, and J. Norman, Philosophia Verlag, München, 1989.
  • [21] Queiroz, G. S., On the Duality Between Intuitionism and Paraconsistency (in Portuguese), Ph.D. thesis, State University of Campinas, IFCH, 1997.
  • [22] Sette, A. M., ``On the propositional calculus $\mathcalP^1$,'' Mathematica Japonicae, vol. 18 (1973), pp. 173--80.
  • [23] Sette, A. M., and W. A. Carnielli, ``Maximal weakly-intuitionistic logics,'' Studia Logica, vol. 55 (1995), pp. 181--203.
  • [24] Sylvan, R., ``Variations on da Costa $\mathcalC$ systems and dual-intuitionistic logics I: Analyses of $\mathcalC_\omega$ and $\mathcalC\mathcalC_\omega$,'' Studia Logica, vol. 49 (1990), pp. 47--65.