Notre Dame Journal of Formal Logic

Kripke Completeness of Infinitary Predicate Multimodal Logics

Yoshihito Tanaka

Abstract

Kripke completeness of some infinitary predicate modal logics is presented. More precisely, we prove that if a normal modal logic $ \bf L$ above $ \bf K$ is $ \cal {D}$-persistent and universal, the infinitary and predicate extension of $ \bf L$ with BF$\scriptstyle \omega_{{1}}$ and BF is Kripke complete, where BF$\scriptstyle \omega_{{1}}$ and BF denote the formulas $ \bigwedge_{{{i\in\omega}}}^{{}}$ $ \Box$ pi $ \supset$ $ \Box$ $ \bigwedge_{{{i\in\omega}}}^{{}}$pi and $ \forall x \Box \varphi \supset \Box \forall x \varphi$, respectively. The results include the completeness of extensions of standard modal logics such as $ \bf K$, and its extensions by the schemata T, B, 4, 5, D, and their combinations. The proof is obtained by extending the correspondence between the representation of modal algebras and the completeness of propositional modal logic to infinite.

Article information

Source
Notre Dame J. Formal Logic, Volume 40, Number 3 (1999), 326-340.

Dates
First available in Project Euclid: 28 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1022615613

Digital Object Identifier
doi:10.1305/ndjfl/1022615613

Mathematical Reviews number (MathSciNet)
MR1845628

Zentralblatt MATH identifier
1007.03016

Subjects
Primary: 03B45: Modal logic (including the logic of norms) {For knowledge and belief, see 03B42; for temporal logic, see 03B44; for provability logic, see also 03F45}

Citation

Tanaka, Yoshihito. Kripke Completeness of Infinitary Predicate Multimodal Logics. Notre Dame J. Formal Logic 40 (1999), no. 3, 326--340. doi:10.1305/ndjfl/1022615613. https://projecteuclid.org/euclid.ndjfl/1022615613


Export citation

References

  • Barwise, J., and S. Feferman, editors, Model-Theoretic Logic, Springer-Verlag, Berlin, 1985. MR 87g:03033
  • Chagrov, A. V., and M. V. Zakharyaschev, Modal Logic, Oxford University Press, Oxford, 1997. Zbl 0871.03007 MR 98e:03021
  • Dickmann, M. A., Large Infinitary Languages, North-Holland, Amsterdam, 1975. Zbl 0324.02010 MR 58:27450
  • Dickmann, M. A., “Larger infinitary languages,” pp. 317–64 in Model-Theoretic Logic, edited by J. Barwise and S. Feferman, Springer-Verlag, Berlin, 1985.
  • Fattorisi-Barnaba, M., and S. Grassotti, “An infinitary graded modal logic (graded modalities VI),” Mathematical Logic Quarterly, vol. 41 (1995), pp. 547–63. Zbl 0833.03006 MR 97h:03021
  • Feferman, S., “Lectures on proof theory,” pp. 1–107 in Proceedings of the Summer School in Logic, vol. 70, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1967. Zbl 0248.02033 MR 38:4294
  • Fine, K., Some Connections Between Elementary and Modal Logic, vol. 81, Studies in Logic, North-Holland, Amsterdam, 1975. Zbl 0316.02021 MR 53:5265
  • G örnemann, S., “A logic stronger than intuitionism,” The Journal of Symbolic Logic, vol. 36 (1971), pp. 249–61. Zbl 0276.02013 MR 45:27
  • Jónsson, B., and A. Tarski, “Boolean algebras with operators I,” American Journal of Mathematics, vol. 73 (1951), pp. 891–931. Zbl 0045.31505 MR 13:426c
  • Kaneko, M., and T. Nagashima, “Game logic and its applications I,” Studia Logica, vol. 57 (1996), pp. 325–54. Zbl 0858.03035 MR 98g:03052
  • Kaneko, M., and T. Nagashima, “Game logic and its applications II,” Studia Logica, vol. 58 (1997), pp. 273–303. Zbl 0871.03030 MR 98g:03053
  • Karp, C., Languages with Expressions of Infinite Length, North-Holland, Amsterdam, 1964. Zbl 0127.00901 MR 31:1178
  • López-Escobar, E. G. K., “An interpolation theorem for denumerably long formulas,” Fundamenta Mathematicæ, vol. 57 (1965), pp. 253–72. Zbl 0137.00701 MR 32:5500
  • Lorenzen, P., “Algebraische und logitische Untersuchungen über freie Verbände,” The Journal of Symbolic Logic, vol. 16 (1951), pp. 81–106.
  • Nadel, M. E., “Infinitary intuitionistic logic from a classical point of view,” Annals of Mathematical Logic, vol. 14 (1978), pp. 159–91. Zbl 0406.03055 MR 80f:03027
  • Novikov, P. S., “Inconsistencies of certain logical calculi,” pp. 71–74 in Infinitistic Methods, Pergamon, Oxford, 1961. MR 25:4990
  • Radev, S., “Infinitary propositional normal modal logic,” Studia Logica, vol. 46 (1987), pp. 291–309. Zbl 0644.03009 MR 89i:03039
  • Rasiowa, H., and R. Sikorski, “A proof of the completeness theorem of G ödel,” Fundamenta Mathematicæ, vol. 37 (1950), pp. 193–200. Zbl 0040.29303 MR 12:661f
  • Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, PWN-Polish Scientific Publishers, Warszawa, 1963. Zbl 0122.24311 MR 29:1149
  • Rauszer, C., and B. Sabalski, “Remarks on distributive pseudo-Boolean algebra,” Bulletin De L'academie Polonaise des Sciences, vol. 23 (1975), pp. 123–29. Zbl 0309.02062 MR 51:7978
  • Tanaka, Y., “Completeness theorem of infinitary propositional modal logic,” Research Report IS-RR-97-0007F, Japan Advanced Institute of Science and Technology, Ishikawa, 1997.
  • Tanaka, Y., “Applications of Shimura's methods of canonical model to intermediate infinitary logics,” Research Report IS-RR-98-0021F, Japan Advanced Institute of Science and Technology, Ishikawa, 1998.
  • Tanaka, Y., “Representations of algebras and Kripke completeness of infinitary and predicate logics.” Ph.D. thesis, Japan Advanced Institute of Science and Technology, Ishikawa, 1999.
  • Tanaka, Y., and H. Ono, “The Rasiowa-Sikorski Lemma and Kripke completeness of predicate and infinitary modal logics,” pp. 419–37 in Advances in Modal Logic, vol. 2, edited by M. Zakharyashev et al., CSLI Publications, Stanford, 2000. MR 1838260
  • van Benthem, J., Modal Logic and Classical Logic, Bibliopolis, Naples, 1983. Zbl 0639.03014 MR 88k:03029
  • Wolter, F., “The structure of lattices of subframe logics,” Annals of Pure and Applied Logic, vol. 86 (1997), pp. 47–100. Zbl 0878.03015 MR 98h:03030