Moscow Journal of Combinatorics and Number Theory

On approximations of solutions of the equation $P(z,\ln z)=0$ by algebraic numbers

Alexander Galochkin and Anastasia Godunova

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/moscow.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The paper is devoted to studying how well solutions of an equation P(z,lnz)=0, where P(x,y)[x,y], can be approximated with algebraic numbers. We prove a new bound with the help of a construction due to K. Mahler.

Article information

Source
Mosc. J. Comb. Number Theory, Volume 9, Number 4 (2020), 435-440.

Dates
Received: 30 December 2019
Revised: 11 February 2020
Accepted: 25 February 2020
First available in Project Euclid: 12 November 2020

Permanent link to this document
https://projecteuclid.org/euclid.moscow/1605150028

Digital Object Identifier
doi:10.2140/moscow.2020.9.435

Mathematical Reviews number (MathSciNet)
MR4170707

Zentralblatt MATH identifier
07272360

Subjects
Primary: 11J82: Measures of irrationality and of transcendence

Keywords
Diophantine approximation algebraic numbers logarithms

Citation

Galochkin, Alexander; Godunova, Anastasia. On approximations of solutions of the equation $P(z,\ln z)=0$ by algebraic numbers. Mosc. J. Comb. Number Theory 9 (2020), no. 4, 435--440. doi:10.2140/moscow.2020.9.435. https://projecteuclid.org/euclid.moscow/1605150028


Export citation

References

  • N. I. Feldman, “\cyr Arifmeticheskie svoĭstva resheniĭ odnogo transcendentnogo uravneniya (Arithmetic properties of the solutions of a transcendental equation)”, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 19:1 (1964), 13–20.
  • N. I. Feldman, \cyr Priblizheniya algebraicheskikh chisel, Moskov. Gos. Univ., Moscow, 1981.
  • A. I. Galochkin, “\cyr O diofantovykh priblizheniyakh znacheniĭ pokazatelp1noĭ funktsii i resheniĭ nekotorykh transcendentnykh uravneniĭ (Diophantine approximations of values of the exponential function and the solutions of certain transcendental equations)”, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 27:3 (1972), 16–23.
  • K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus, Teil I”, J. Reine Angew. Math. 166 (1932), 118–136.
  • K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus, Teil II”, J. Reine Angew. Math. 166 (1932), 137–150.
  • K. Mahler, “Applications of some formulae by Hermite to the approximation of exponentials and logarithms”, Math. Ann. 168 (1967), 200–227.
  • Y. V. Nesterenko and M. Waldschmidt, “\cyr O priblizhenii algebraicheskimi chislami znacheniĭ e1ksponentsialp1noĭ funktsii i logarifma (Algebraic approximation of values of the exponential function and the logarithm)”, pp. 23–42 in \cyr Diofantovy priblizheniya, Matematicheskie Zapiski 2, Moskov. Gos. Univ., Moscow, 1996.