Open Access
November 2018 Henkin Measures for the Drury–Arveson Space
Michael Hartz
Michigan Math. J. 67(4): 815-826 (November 2018). DOI: 10.1307/mmj/1539072025

Abstract

We exhibit Borel probability measures on the unit sphere in Cd for d2 that are Henkin for the multiplier algebra of the Drury–Arveson space, but not Henkin in the classical sense. This provides a negative answer to a conjecture of Clouâtre and Davidson.

Citation

Download Citation

Michael Hartz. "Henkin Measures for the Drury–Arveson Space." Michigan Math. J. 67 (4) 815 - 826, November 2018. https://doi.org/10.1307/mmj/1539072025

Information

Received: 27 January 2017; Revised: 17 May 2017; Published: November 2018
First available in Project Euclid: 9 October 2018

zbMATH: 07056370
MathSciNet: MR3877438
Digital Object Identifier: 10.1307/mmj/1539072025

Subjects:
Primary: 46E22
Secondary: 47A13

Rights: Copyright © 2018 The University of Michigan

Vol.67 • No. 4 • November 2018
Back to Top