The Michigan Mathematical Journal

Nagata’s Compactification Theorem for Normal Toric Varieties over a Valuation Ring of Rank One

Alejandro Soto

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Using invariant Zariski–Riemann spaces, we prove that every normal toric variety over a valuation ring of rank one can be embedded as an open dense subset into a proper toric variety equivariantly. This extends a well-known theorem of Sumihiro for toric varieties over a field to this more general setting.

Article information

Source
Michigan Math. J., Volume 67, Issue 1 (2018), 99-116.

Dates
Received: 9 August 2016
Revised: 5 April 2017
First available in Project Euclid: 26 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1508983384

Digital Object Identifier
doi:10.1307/mmj/1508983384

Mathematical Reviews number (MathSciNet)
MR3770855

Zentralblatt MATH identifier
06965591

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20] 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 13F30: Valuation rings [See also 13A18]

Citation

Soto, Alejandro. Nagata’s Compactification Theorem for Normal Toric Varieties over a Valuation Ring of Rank One. Michigan Math. J. 67 (2018), no. 1, 99--116. doi:10.1307/mmj/1508983384. https://projecteuclid.org/euclid.mmj/1508983384


Export citation

References

  • [1] B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), no. 3, 205–257.
  • [2] G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math., 168, Springer-Verlag, New York, 1996.
  • [3] G. Ewald and M.-N. Ishida, Completion of real fans and Zariski–Riemann spaces, Tohoku Math. J. (2) 58 (2006), no. 2, 189–218.
  • [4] K. Fujiwara and F. Kato, Foundations of rigid geometry I, arXiv:1308.4734v5, 2017.
  • [5] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.
  • [6] A. Grothendieck, and J. A. Dieudonné, Eléments de géométrie algébrique. I, Volume 166 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1971.
  • [7] W. Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math., 589, pp. 125–189, Amer. Math. Soc., Providence, RI, 2013.
  • [8] W. Gubler and A. Soto, Classification of normal toric varieties over a valuation ring of rank one, Doc. Math. 20 (2015), 171–198.
  • [9] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin, 1973.
  • [10] Z. Qu, Toric schemes over a discrete valuation ring and tropical compactifications, Ph.D. thesis, University of Texas at Austin, 2009.
  • [11] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89.
  • [12] F. Rohrer, Completions of fans, J. Geom. 100 (2011), no. 1–2, 147–169.
  • [13] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.
  • [14] H. Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605.