The Michigan Mathematical Journal

SO(n) Covariant local tensor valuations on polytopes

Daniel Hug and Rolf Schneider

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Michigan Math. J., Volume 66, Issue 3 (2017), 637-659.

Dates
First available in Project Euclid: 26 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1501034510

Digital Object Identifier
doi:10.1307/mmj/1501034510

Mathematical Reviews number (MathSciNet)
MR3695357

Zentralblatt MATH identifier
1376.52024

Subjects
Primary: 52A20: Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45] 52B45: Dissections and valuations (Hilbert's third problem, etc.)

Citation

Hug, Daniel; Schneider, Rolf. SO( n ) Covariant local tensor valuations on polytopes. Michigan Math. J. 66 (2017), no. 3, 637--659. doi:10.1307/mmj/1501034510. https://projecteuclid.org/euclid.mmj/1501034510


Export citation

References

  • [1] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math. 149 (1999), 977–1005.
  • [2] S. Alesker, Description of continuous isometry covariant valuations on convex sets, Geom. Dedicata 74 (1999), 241–248.
  • [3] S. Alesker, New structures on valuations and applications. Integral geometry and valuations, Adv. Courses Math. CRM Barcelona, pp. 1–45, Birkhäuser/Springer, Basel, 2014.
  • [4] C. Beisbart, R. Dahlke, K. Mecke, and H. Wagner, Vector- and tensor-valued descriptors for spatial patterns (K. Mecke, D. Stoyan eds.), Morphology of condensed matter, Lecture Notes in Phys., 600, pp. 238–260, Springer, Berlin, 2002.
  • [5] A. Bernig and D. Hug, Kinematic formulas for tensor valuations, J. Reine Angew. Math., (to appear), arXiv:1402.2750v1. doi:10.1515/crelle-2015-0023.
  • [6] C. Haberl and L. Parapatits, Centro-affine tensor valuations, Adv. Math. 316 (2017), 806–865.
  • [7] J. Hörrmann, D. Hug, M. Klatt, and K. Mecke, Minkowski tensor density formulas for Boolean models, Adv. in Appl. Math. 55 (2014), 48–85.
  • [8] D. Hug, M. Kiderlen, and A. M. Svane, Voronoi-based estimation of Minkowski tensors from finite point samples, Discrete Comput. Geom. 57 (2017), 545–570.
  • [9] D. Hug and R. Schneider, Local tensor valuations, Geom. Funct. Anal. 24 (2014), 1516–1564.
  • [10] D. Hug and R. Schneider, Tensor valuations and their local versions, Tensor valuations and their applications in stochastic geometry and imaging, Lecture Notes in Math., 2177, pp. 27–65, Springer International Publishing, 2017.
  • [11] D. Hug, R. Schneider, and R. Schuster, The space of isometry covariant tensor valuations, Algebra i Analiz 19 (2007), 194–224, $=$ St. Petersburg Math. J., 19, 2008, 137–158.
  • [12] D. Hug, R. Schneider, and R. Schuster, Integral geometry of tensor valuations, Adv. in Appl. Math. 41 (2008), 482–509.
  • [13] M. Kiderlen and E. B. V. Jensen eds., Tensor valuations and their applications in stochastic geometry and imaging, Lecture Notes in Math., 2177, Springer International Publishing, 2017. doi:10.1007/978-3-319-51951-7.
  • [14] A. Kousholt, M. Kiderlen, and D. Hug, Surface tensor estimation from linear sections, Math. Nachr. 288 (2015), 1647–1672.
  • [15] P. McMullen, Valuations and dissections (P. M. Gruber, J. M. Wills eds.), Handbook of convex geometry, B, pp. 933–988, North-Holland, Amsterdam, 1993.
  • [16] P. McMullen, Isometry covariant valuations on convex bodies, Rend. Circ. Mat. Palermo (2) Suppl. 50 (1997), 259–271.
  • [17] P. McMullen and R. Schneider, Valuations on convex bodies (P. M. Gruber, J. M. Wills eds.), Convexity and its applications, pp. 170–247, Birkhäuser, Basel, 1983.
  • [18] W. Mickel, S. C. Kapfer, G. E. Schröder–Turk, and K. Mecke, Shortcoming of the bond orientational order parameters for the analysis of disordered particulate matter, J. Chem. Phys. 138 (2013), no. 4, 044501.
  • [19] H. R. Müller, Über Momente ersten und zweiten Grades in der Integralgeometrie, Rend. Circ. Mat. Palermo (2) 2 (1953), 1–21.
  • [20] K. Przesławski, Integral representations of mixed volumes and mixed tensors, Rend. Circ. Mat. Palermo (2) Suppl. 50 (1997), 299–314.
  • [21] M. Saienko, Tensor-valued valuations and curvature measures in Euclidean spaces, Ph.D. thesis, Goethe-Universität Frankfurt, 2016.
  • [22] R. Schneider, Tensor valuations on convex bodies and integral geometry, Rend. Circ. Mat. Palermo (2) Suppl. 65 (2000), 295–316.
  • [23] R. Schneider, Local tensor valuations on convex polytopes, Monatsh. Math. 171 (2013), 459–479.
  • [24] R. Schneider, Convex bodies: the Brunn–Minkowski theory, second edition, Encyclopedia Math. Appl., 151, Cambridge University Press, Cambridge, 2014.
  • [25] R. Schneider and R. Schuster, Tensor valuations on convex bodies and integral geometry, II, Rend. Circ. Mat. Palermo (2) Suppl. 70 (2002), 295–314.
  • [26] R. Schneider and R. Schuster, Particle orientation from section stereology, Rend. Circ. Mat. Palermo (2) Suppl. 77 (2006), 623–633.
  • [27] G. E. Schröder–Turk, S. Kapfer, B. Breidenbach, C. Beisbart, and K. Mecke, Tensorial Minkowski functionals and anisotropy measures for planar patterns, J. Microsc. 238 (2010), 57–74.
  • [28] G. E. Schröder–Turk, W. Mickel, S. C. Kapfer, M. A. Klatt, F. M. Schaller, M. J. F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, and K. Mecke, Minkowski tensor shape analysis of cellular, granular and porous structures, Adv. Mater., Spec. Issue: Hierarchical Struct. Towards Funct. 23 (2011), 2535–2553.
  • [29] G. E. Schröder–Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach, D. Hug, and K. Mecke, Minkowski tensors of anisotropic spatial structure, New J. Phys. 15 (2013), 083028, (38 pp).