The Michigan Mathematical Journal

Equivariantly uniformly rational varieties

Charlie Petitjean

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Michigan Math. J., Volume 66, Issue 2 (2017), 245-268.

Dates
First available in Project Euclid: 1 June 2017

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1496282443

Digital Object Identifier
doi:10.1307/mmj/1496282443

Mathematical Reviews number (MathSciNet)
MR3657217

Zentralblatt MATH identifier
1372.14042

Subjects
Primary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 14R20: Group actions on affine varieties [See also 13A50, 14L30]
Secondary: 14M20: Rational and unirational varieties [See also 14E08] 14E08: Rationality questions [See also 14M20]

Citation

Petitjean, Charlie. Equivariantly uniformly rational varieties. Michigan Math. J. 66 (2017), no. 2, 245--268. doi:10.1307/mmj/1496282443. https://projecteuclid.org/euclid.mmj/1496282443


Export citation

References

  • K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557–607.
  • K. Altmann, J. Hausen, and H. Suss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), no. 2, 215–242.
  • I. Arzhantsev, A. Perepechko, and H. Süss, Infinite transitivity on universal torsors, J. Lond. Math. Soc. (2) 89 (2014), no. 3, 762–778.
  • A. Białynicki-Birula, Remarks on the action of an algebraic torus on $k^{n}$. II, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 14 (1966), 177–181.
  • G. Bodnàr, H. Hauser, J. Schicho, and O. Villamayor U, Plain varieties, Bull. Lond. Math. Soc. 40 (2008), no. 6, 965–971.
  • F. Bogomolov and C. Böhning, On uniformly rational varieties, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, pp. 33–48, Amer. Math. Soc., Providence, RI, 2014.
  • M. Demazure, Anneaux gradués normaux, Introduction à la théorie des singularités, II, Travaux en Cours, 37, pp. 35–68, Hermann, Paris, 1988.
  • A. Dubouloz, Quelques remarques sur la notion de modification affine..
  • H. Flenner and M. Zaidenberg, Normal affine surfaces with $\mathbb{C}^{*}$-actions, Osaka J. Math. 40 (2003), no. 4, 981–1009.
  • M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851–897.
  • R. Gurjar, M. Koras, and P. Russell, Two dimensional quotients of \noun$\mathbb{C}^{n}$ by a reductive group, Electron. Res. Announc. Math. Sci. 15 (2008), 62–64.
  • A. Gutwirth, The action of an algebraic torus on the affine plane, Trans. Amer. Math. Soc. 105 (1962), 407–414.
  • R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977.
  • S. Kaliman, M. Koras, L. Makar-Limanov, and P. Russell, $\mathbb{C}^{*}$-Actions on $\mathbb{C}^{3}$ are linearisable, Electron. Res. Announc. Am. Math. Soc. 3 (1997), 63–71.
  • S. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95.
  • T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), no. 2, 439–451.
  • T. Kambayashi and P. Russell, On linearizing algebraic torus actions, J. Pure Appl. Algebra 23 (1982), no. 3, 243–250.
  • G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973.
  • M. Koras and P. Russell, Contractible threefolds and $\mathbb{C}^{*}$-actions on $\mathbb{C}^{3}$, J. Algebraic Geom. 6 (1997), no. 4, 671–695.
  • M. Kumar and P. Murthy, Curves with negative self-intersection on rational surfaces, J. Math. Kyoto Univ. 22 (1982/83), no. 4, 767–777.
  • C. Petitjean, Cyclic cover of affine article $\mathbb{T}$-varieties, J. Pure Appl. Algebra 219 (2015), no. 9, 4265–4277.
  • C. Petitjean, Actions hyperboliques du groupe multiplicatif sur des variétés affines: espaces exotiques et structures locales, thesis, 2015.
  • H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.
  • M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691–723.
  • M. Zaidenberg, Lectures on exotic algebraic structures on affine spaces.. \printaddresses