The Michigan Mathematical Journal

Weak amenability of the central Beurling algebras on [FC]- groups

Varvara Shepelska and Yong Zhang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Michigan Math. J., Volume 66, Issue 2 (2017), 433-446.

First available in Project Euclid: 6 April 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46H20: Structure, classification of topological algebras 43A20: $L^1$-algebras on groups, semigroups, etc.
Secondary: 43A10: Measure algebras on groups, semigroups, etc.


Shepelska, Varvara; Zhang, Yong. Weak amenability of the central Beurling algebras on [FC] - groups. Michigan Math. J. 66 (2017), no. 2, 433--446. doi:10.1307/mmj/1491465686.

Export citation


  • [1] M. Alaghmandan, Y. Choi, and E. Samei, ZL-amenability and characters for the restricted direct products of finite groups, J. Math. Anal. Appl. 411 (2014), 314–328.
  • [2] A. Azimifard, E. Samei, and N. Spronk, Amenability properties of the centres of group algebras, J. Funct. Anal. 256 (2009), 1544–1564.
  • [3] W. G. Bade, P. C. Curtis Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. Lond. Math. Soc. 55 (1987), 359–377.
  • [4] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, 9th Congrés des Mathématiciens Scandinaves 1938, Helsinki, pp. 345–366, 1939.
  • [5] C. R. Borwick, Johnson–Hochschild cohomology of weighted group algebras and augmentation ideals, Ph.D. thesis, University of Newcastle upon Tyne, 2003.
  • [6] H. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
  • [7] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monogr. Ser., 24, The Clarendon Press, Oxford University Press, New York, 2000, Oxford Science Publications.
  • [8] F. Ghahramani, R. J. Loy, and Y. Zhang, Generalized notions of amenability, II, J. Funct. Anal. 254 (2008), 1776–1810.
  • [9] F. Ghahramani, E. Samei, and Y. Zhang, Generalized amenability properties of the Beurling algebras, J. Aust. Math. Soc. 89 (2010), 359–376.
  • [10] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Stud., 16, Van Nostrand Reinhold Co., New York–Toronto, Ont.–London, 1969.
  • [11] N. Gronbaek, Amenability of weighted convolution algebras on locally compact groups, Trans. Amer. Math. Soc. 319 (1990), 765–775.
  • [12] N. Gronbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 149–162.
  • [13] S. Grosser and M. Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340.
  • [14] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40.
  • [15] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, New York, 1963.
  • [16] K. Iwasawa, Topological groups with invariant compact neighborhoods of the identity, Ann. of Math. (2) 54 (1951), 345–348.
  • [17] B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. Lond. Math. Soc. (2) 50 (1994), 361–374.
  • [18] H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Invent. Math. 5 (1968), 249–254.
  • [19] J. Liukkonen and R. Mosak, Harmonic analysis and centers of Beurling algebras, Comment. Math. Helv. 57 (1977), 297–315.
  • [20] J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer. Math. Soc. 195 (1974), 147–163.
  • [21] J. R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85–108.
  • [22] R. D. Mosak, Central functions in group algebras, Proc. Amer. Math. Soc. 29 (1971), 613–616.
  • [23] R. D. Mosak, The $L^{1}$- and $C^{\ast}$-algebras of $\mbox{[FIA]}^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310.
  • [24] R. D. Mosak, Ditkin’s condition and primary ideals in central Beurling algebras, Monatsh. Math. 85 (1978), 115–124.
  • [25] T. W. Palmer, Banach algebras and the general theory of $*$-algebras, Vol. 2. ∗-algebras, Encyclopedia Math. Appl., 79, Cambridge University Press, Cambridge, 2001.
  • [26] H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, 2nd edition, London Math. Soc. Monogr. Ser., 22, The Clarendon Press, Oxford University Press, New York, 2000.
  • [27] E. Samei, Weak amenability and $2$-weak amenability of Beurling algebras, J. Math. Anal. Appl. 346 (2008), 451–467.
  • [28] V. Shepelska, Weak amenability of weighted group algebras on some discrete groups, Studia Math. 230 (2015), 189–214.
  • [29] V. Shepelska and Y. Zhang, Non-weakly amenable Beurling algebras, Indiana Univ. Math. J., to appear.
  • [30] M. C. White, Characters on weighted amenable groups, Bull. Lond. Math. Soc. 23 (1991), 375–380.
  • [31] Y. Zhang, Weak amenability of commutative Beurling algebras, Proc. Amer. Math. Soc. 142 (2014), 1649–1661.
  • [32] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 3237–3242.