The Michigan Mathematical Journal

New Examples of Constant Mean Curvature Surfaces in S2×R and H2×R

José M. Manzano and Francisco Torralbo

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Michigan Math. J., Volume 63, Issue 4 (2014), 701-723.

Dates
First available in Project Euclid: 5 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1417799222

Digital Object Identifier
doi:10.1307/mmj/1417799222

Mathematical Reviews number (MathSciNet)
MR3286667

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]

Citation

Manzano, José M.; Torralbo, Francisco. New Examples of Constant Mean Curvature Surfaces in $\mathbb{S}^{2}\times\mathbb{R}$ and $\mathbb{H}^{2}\times\mathbb{R}$. Michigan Math. J. 63 (2014), no. 4, 701--723. doi:10.1307/mmj/1417799222. https://projecteuclid.org/euclid.mmj/1417799222


Export citation

References

  • [AEG08] J. A. Aledo, J. M. Espinar, and J. A. Gálvez, Height estimates for surfaces with positive constant mean curvature in $\mathbb{M}^{2}\times\mathbb{R}$, Illinois J. Math. 52 (2008), no. 1, 203–211.
  • [Aron57] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249.
  • [CS85] H. Choi and R. Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), no. 3, 387–394.
  • [CH13] M. Chuaqui and L. Hauswirth, Generalized Krust theorem in homogeneous spaces, preprint.
  • [Dan07] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv. 82 (2007), 87–131.
  • [DHM09] B. Daniel, L. Hauswirth, and P. Mira, Lectures notes on homogeneous 3-manifolds, 4th KIAS workshop on differential geometry, Korea Institute for Advanced Study, Seoul, Korea, 2009.
  • [DHKW92] U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab, Minimal surfaces, vols. I and II, Springer-Verlag, Berlin, 1992.
  • [GB93] K. Große-Brauckmann, New surfaces of constant mean curvature, Math. Z. 214 (1993), no. 4, 527–565.
  • [GB05] K. Große-Brauckmann, Cousins of constant mean curvature surfaces, Global theory of minimal surfaces, Clay Math. Proc., 2, pp. 747–767, Amer. Math. Soc., Providence, RI, 2005.
  • [HST08] L. Hauswirth, R. Sa Earp, and E. Toubiana, Associate and conjugate minimal immersions in $\mathbf{M}\times\mathbf{R}$, Tohoku Math. J. (2) 60 (2008), no. 2, 267–286.
  • [HH89] W. Hsiang and W. Hsiang, On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math. 98 (1989), no. 1, 39–58.
  • [K89] H. Karcher, The triply periodic minimal surfaces of A. Schoen and their constant mean curvature companions, Manuscripta Math. 64 (1989), 291–357.
  • [KPS88] H. Karcher, U. Pinkall, and I. Sterling, New minimal surfaces in ${S^{3}}$, J. Differential Geom. 28 (1988), no. 2, 169–185.
  • [Law70] H. B. Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374.
  • [Man12] J. M. Manzano, Superficies de curvatura media constante en espacios homogéneos, Ph.D. thesis, Universidad de Granada, 2012. ISBN 978-84-90282694.
  • [Man13] H. B. Lawson Jr., Estimates for constant mean curvature graphs in $M\times\mathbb{R}$, Rev. Mat. Iberoam. 29 (2013), 1263–1281.
  • [MRR] L. Mazet, M. M. Rodríguez, and H. Rosenberg, Periodic constant mean curvature surfaces in $\mathbb{H}^{2}\times\mathbb{R}$, Asian J. Math. 18 (2014), no. 5, 829–858.
  • [MY82] W. Meeks and S.-T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982), 151–168.
  • [MR12] F. Morabito and M. M. Rodríguez, Saddle towers and minimal $k$-noids in $\mathbb{H}^{2}\times\mathbb{R}$, J. Inst. Math. Jussieu 11 (2012), no. 2, 333–349.
  • [PR99] R. Pedrosa and M. Ritoré, Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J. 48 (1999), no. 4, 1357–1394.
  • [P] A. L. Pinheiro, Minimal vertical graphs in Heisenberg space, preprint.
  • [Po94] K. Polthier, Geometric a priori estimates for hyperbolic minimal surfaces, Bonner Math. Schriften 263 (1994).
  • [R] M. M. Rodríguez, Minimal surfaces with limit ends in $\mathbb{H}^{2}\times \mathbb{R}$, J. Reine Angew. Math. 685 (2013), 123–141.
  • [ST09] R. Souam and E. Toubiana, Totally umbilic surfaces in homogeneous 3-manifolds, Comment. Math. Helv. 84 (2009), no. 3, 673–704.
  • [Thu] W. Thurston, Three-dimensional geometry and topology, Princeton Math. Ser., 35, Princeton University Press, Princeton, 1997.
  • [Tor10a] F. Torralbo, Compact minimal surfaces in the Berger spheres, Ann. Global Anal. Geom. 41 (2012), 391–405.
  • [Tor10b] F. Torralbo, Rotationally invariant constant mean curvature surfaces in homogeneous 3-manifolds, Differential Geom. Appl. 28 (2010), no. 5, 593–607.