Michigan Mathematical Journal

Dilatation, Pointwise Lipschitz Constants, and Condition N on Curves

Marshall Williams

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 63, Issue 4 (2014), 687-700.

Dates
First available in Project Euclid: 5 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1417799221

Digital Object Identifier
doi:10.1307/mmj/1417799221

Mathematical Reviews number (MathSciNet)
MR3286666

Zentralblatt MATH identifier
1310.30051

Subjects
Primary: 30L10: Quasiconformal mappings in metric spaces
Secondary: 26B30: Absolutely continuous functions, functions of bounded variation 30C65: Quasiconformal mappings in $R^n$ , other generalizations

Citation

Williams, Marshall. Dilatation, Pointwise Lipschitz Constants, and Condition $N$ on Curves. Michigan Math. J. 63 (2014), no. 4, 687--700. doi:10.1307/mmj/1417799221. https://projecteuclid.org/euclid.mmj/1417799221


Export citation

References

  • [BC06] Z. M. Balogh and M. Csörnyei, Scaled-oscillation and regularity, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2667–2675 (electronic).
  • [BKR07] Z. M. Balogh, P. Koskela, and S. Rogovin, Absolute continuity of quasiconformal mappings on curves, Geom. Funct. Anal. 17 (2007), no. 3, 645–664.
  • [BRZ04] Z. M. Balogh, K. Rogovin, and T. Zürcher, The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal. 14 (2004), no. 3, 405–422.
  • [BA56] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), no. 1, 125–142.
  • [Boj88] B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., 1351, pp. 52–68, Springer, Berlin, 1988.
  • [Cri06] M. Cristea, Quasiregularity in metric spaces, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 3, 291–310.
  • [Dud07] J. Duda, Absolutely continuous functions with values in a metric space, Real Anal. Exchange 32 (2007), no. 2, 569–581.
  • [Fed69] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969.
  • [Fug57] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219.
  • [Han12] B. Hanson, Linear dilatation and differentiability of homeomorphisms of $\mathbb{R}^{n}$, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3541–3547.
  • [Hei01] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
  • [HK95] J. Heinonen and P. Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61–79.
  • [HK98] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61.
  • [HKST01] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139.
  • [KM02] S. Kallunki and O. Martio, ACL homeomorphisms and linear dilatation, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1073–1078 (electronic).
  • [KR05] P. Koskela and S. Rogovin, Linear dilatation and absolute continuity, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 385–392.
  • [Moc10] M. Mocanu, A generalization of Orlicz–Sobolev spaces on metric measure spaces via Banach function spaces, Complex Var. Elliptic Equ. 55 (2010), no. 1–3, 253–267.
  • [Sha00] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2000), no. 2, 243–279.
  • [Tuo04] H. Tuominen, Orlicz–Sobolev spaces on metric measure spaces, Ann. Acad. Sci. Fenn. Math. Diss. 135 (2004), 86. Dissertation, University of Jyväskylä, Jyväskylä, 2004.
  • [Tys98] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548.
  • [Wil12] M. Williams, Geometric and analytic quasiconformality in metric measure spaces, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1251–1266.
  • [WZ13] K. Wildrick and T. Zürcher, Sharp differentiability results for lip, preprint, 2013, arXiv:1208.2133v3 [math.MG].
  • [Zü07] T. Zürcher, Local Lipschitz numbers and Sobolev spaces, Michigan Math. J. 55 (2007), no. 3, 561–574.