Michigan Mathematical Journal

Mirror symmetry for stable quotients invariants

Yaim Cooper and Aleksey Zinger

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 63, Issue 3 (2014), 571-621.

Dates
First available in Project Euclid: 5 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1409932634

Digital Object Identifier
doi:10.1307/mmj/1409932634

Mathematical Reviews number (MathSciNet)
MR3255692

Zentralblatt MATH identifier
06362116

Citation

Cooper, Yaim; Zinger, Aleksey. Mirror symmetry for stable quotients invariants. Michigan Math. J. 63 (2014), no. 3, 571--621. doi:10.1307/mmj/1409932634. https://projecteuclid.org/euclid.mmj/1409932634


Export citation

References

  • \beginbarticle \bauthor\binitsM. \bsnmAtiyah and \bauthor\binitsR. \bsnmBott, \batitleThe moment map and equivariant cohomology, \bjtitleTopology \bvolume23 (\byear1984), page1–\blpage28. \endbarticle \OrigBibText M.,Atiyah and R.,Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1–28 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsP. \bsnmCandelas, \bauthor\binitsX. \bparticlede la \bsnmOssa, \bauthor\binitsP. \bsnmGreen, and \bauthor\binitsL. \bsnmParkes, \batitleA pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, \bjtitleNucl. Phys. B \bvolume359 (\byear1991), page21–\blpage74. \endbarticle \OrigBibText P. Candelas, X. de la Ossa, P. Green, and L. Parkes, A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B359 (1991), 21–74 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsI. \bsnmCiocan-Fontanine and \bauthor\binitsB. \bsnmKim, \batitleModuli stacks of stable toric quasimaps, \bjtitleAdv. Math. \bvolume225 (\byear2010), no. \bissue6, page3022–\blpage3051. \endbarticle \OrigBibText I. Ciocan-Fontanine and B. Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010), no. 6, 3022–3051 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsI. \bsnmCiocan-Fontanine, \oauthor\binitsB. \bsnmKim, and \oauthor\binitsD. \bsnmMaulik, Stable quasimaps to GIT quotients, \arxivurlarXiv:1106.3724. \endbotherref \OrigBibText I. Ciocan-Fontanine, B. Kim, and D. Maulik, Stable quasimaps to GIT quotients, arXiv:1106.3724 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsY. \bsnmCooper, The geometry of stable quotients in genus one, Math. Ann. (to appear), \arxivurlarXiv:1109.0331. \endbotherref \OrigBibText Y. Cooper, The geometry of stable quotients in genus one, arXiv:1109.0331, to appear in Math. Ann. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmElezi, \batitleMirror symmetry for concavex vector bundles on projective spaces, \bjtitleInt. J. Math. Math. Sci. \bvolume3 (\byear2003), page159–\blpage197. \endbarticle \OrigBibText A. Elezi, Mirror symmetry for concavex vector bundles on projective spaces, Int. J. Math. Math. Sci. 2003, no. 3, 159–197 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmGivental, \batitleEquivariant Gromov–Witten invariants, \bjtitleInt. Math. Res. Not. \bvolume13 (\byear1996), page613–\blpage663. \endbarticle \OrigBibText A. Givental, Equivariant Gromov–Witten invariants, IMRN no. 13 (1996), 613–663 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleThe mirror formula for quintic threefolds, \bjtitleAmer. Math. Soc. Transl. Ser. \bvolume2 (\byear1999), no. \bissue196, page49–\blpage62. \endbarticle \OrigBibText A. Givental, The mirror formula for quintic threefolds, Amer.,Math.,Soc.,Transl.,Ser. 2, 196 (1999), 49–62 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsT. \bsnmGraber and \bauthor\binitsR. \bsnmPandharipande, \batitleLocalization of virtual classes, \bjtitleInvent. Math. \bvolume135 (\byear1999), no. \bissue2, page487–\blpage518. \endbarticle \OrigBibText T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487–518 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsB. \bsnmHassett, \batitleModuli spaces of weighted pointed stable curves, \bjtitleAdv. Math. \bvolume173 (\byear2003), page316–\blpage352. \endbarticle \OrigBibText B. Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), 316–352 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsK. \bsnmHori, \oauthor\binitsS. \bsnmKatz, \oauthor\binitsA. \bsnmKlemm, \oauthor\binitsR. \bsnmPandharipande, \oauthor\binitsR. \bsnmThomas, \oauthor\binitsC. \bsnmVafa, \oauthor\binitsR. \bsnmVakil, and \oauthor\binitsE. \bsnmZaslow, Mirror symmetry, Clay Math. Inst., Cambridge, MA, AMS, Providence, RI, 2003. \endbotherref \OrigBibText K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror Symmetry, Clay Math. Inst., AMS, 2003 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsC. \bsnmKrattenthaler and \bauthor\binitsT. \bsnmRivoal, \batitleOn the integrality of the Taylor coefficients of mirror maps, \bjtitleDuke Math. J. \bvolume151 (\byear2010), page175–\blpage218. \endbarticle \OrigBibText C. Krattenthaler and T. Rivoal, On the integrality of the Taylor coefficients of mirror maps, Duke Math. J. 151 (2010), 175–218 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsB. \bsnmLian, \bauthor\binitsK. \bsnmLiu, and \bauthor\binitsS. T. \bsnmYau, \batitleMirror principle I, \bjtitleAsian J. Math. \bvolume1 (\byear1997), no. \bissue4, page729–\blpage763. \endbarticle \OrigBibText B. Lian, K. Liu, and S.T. Yau, Mirror Principle I, Asian J. of Math., 1 (1997), no. 4, 729–763 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleMirror principle III, \bjtitleAsian J. Math. \bvolume3 (\byear1999), no. \bissue4, page771–\blpage800. \endbarticle \OrigBibText B. Lian, K. Liu, and S.T. Yau, Mirror Principle III, Asian J. of Math., 3 (1999), no. 4, 771–800 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsB. \bsnmLian and \bauthor\binitsS.-T. \bsnmYau, \bctitleIntegrality of certain exponential series, \bbtitleAlgebra and geometry, \bconflocationTaipei, \bconfdate1995, \bsertitleLect. Algebra Geom., \bseriesno2, pp. page215–\blpage227, \bpublisherInt. Press, \blocationCambridge, MA, \byear1998. \endbchapter \OrigBibText B. Lian and S.-T. Yau, Integrality of certain exponential series, Algebra and geometry (Taipei, 1995), 215–227, Lect. Algebra Geom. 2, Int. Press, 1998 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmMarian and \bauthor\binitsD. \bsnmOprea, \batitleVirtual intersections on the Quot scheme and Vafa–Intriligator formulas, \bjtitleDuke Math. J. \bvolume136 (\byear2007), no. \bissue1, page81–\blpage113. \endbarticle \OrigBibText A. Marian and D. Oprea, Virtual intersections on the Quot scheme and Vafa–Intriligator formulas, Duke Math. J. 136 (2007), no. 1, 81–113 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmMarian, \bauthor\binitsD. \bsnmOprea, and \bauthor\binitsR. \bsnmPandharipande, \batitleThe moduli space of stable quotients, \bjtitleGeom. Topol. \bvolume15 (\byear2011), no. \bissue3, page1651–\blpage1706. \endbarticle \OrigBibText A. Marian, D. Oprea, and R. Pandharipande, The moduli space of stable quotients, Geom. Top. 15 (2011), no. 3, 1651–1706 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsD. \bsnmMcDuff and \bauthor\binitsD. \bsnmSalamon, \bbtitle$J$-holomorphic curves and symplectic topology, \bpublisherAMS, \blocationProvidence, RI, \byear2004. \endbbook \OrigBibText D. McDuff and D. Salamon, $J$-holomorphic Curves and Symplectic Topology, AMS 2004 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsD. \bsnmMorrison and \bauthor\binitsR. \bsnmPlesser, \batitleSumming the instantons: quantum cohomology and mirror symmetry in toric varieties, \bjtitleNucl. Phys. B \bvolume440 (\byear1995), no. \bissue1–2, page279–\blpage354. \endbarticle \OrigBibText D. Morrison and R. Plesser, Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties, Nuclear Phys. B 440 (1995), no. 1–2, 279–354 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsA. \bsnmPopa, Two-point Gromov–Witten formulas for symplectic toric manifolds, \arxivurlarXiv:1206.2703. \endbotherref \OrigBibText A. Popa, Two-point Gromov–Witten formulas for symplectic toric manifolds, arXiv:1206.2703 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsY. \bsnmRuan and \bauthor\binitsG. \bsnmTian, \batitleA mathematical theory of quantum cohomology, \bjtitleJDG \bvolume42 (\byear1995), no. \bissue2, page259–\blpage367. \endbarticle \OrigBibText Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, JDG 42 (1995), no. 2, 259–367 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsE. \bsnmSernesi, \bbtitleDeformations of algebraic schemes, \bpublisherSpringer, \blocationBerlin, \byear2006. \endbbook \OrigBibText E. Sernesi, Deformations of Algebraic Schemes, Springer, 2006 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsE. \bsnmWitten, \batitlePhases of $N=2$ theories in two dimensions, \bjtitleNucl. Phys. B \bvolume403 (\byear1993), no. \bissue1–2, page159–\blpage222. \endbarticle \OrigBibText E. Witten, Phases of $N=2$ theories in two dimensions, Nuclear Phys. B 403 (1993), no. 1–2, 159–222 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmZinger, \batitleThe reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, \bjtitleJ. Am. Math. Soc. \bvolume22 (\byear2009), no. \bissue3, page691–\blpage737. \endbarticle \OrigBibText A. Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009), no. 3, 691–737 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleGenus zero two-point hyperplane integrals in Gromov–Witten theory, \bjtitleCommun. Anal. Geom. \bvolume17 (\byear2010), no. \bissue5, page1–\blpage45. \endbarticle \OrigBibText A. Zinger, Genus zero two-point hyperplane integrals in Gromov-Witten theory, Comm. Analysis Geom. 17 (2010), no. 5, 1–45 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref ––––, The genus 0 Gromov–Witten invariants of projective complete intersections, Geom. Top (to appear), \arxivurlarXiv:1106.1633. \endbotherref \OrigBibText A. Zinger, The genus 0 Gromov–Witten invariants of projective complete intersections, to appear in Geom. Top., arXiv:1106.1633 \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref ––––, Double and triple Givental's $J$-function for stable quotients invariants, \arxivurlarXiv:1305.2142. \endbotherref \OrigBibText A. Zinger, Double and triple Givental's $J$-function for stable quotients invariants, math/1305.2142 \endOrigBibText \bptokstructpyb \endbibitem \printaddresses