The Michigan Mathematical Journal

Counting genus one fibered knots in lens spaces

Kenneth Baker

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 63, Issue 3 (2014), 553-569.

Dates
First available in Project Euclid: 5 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1409932633

Digital Object Identifier
doi:10.1307/mmj/1409932633

Mathematical Reviews number (MathSciNet)
MR3255691

Zentralblatt MATH identifier
1304.57024

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 57M12: Special coverings, e.g. branched 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Citation

Baker, Kenneth. Counting genus one fibered knots in lens spaces. Michigan Math. J. 63 (2014), no. 3, 553--569. doi:10.1307/mmj/1409932633. https://projecteuclid.org/euclid.mmj/1409932633


Export citation

References

  • \beginbarticle \bauthor\binitsK. L. \bsnmBaker, \batitleOnce-punctured tori and knots in lens spaces, \bjtitleComm. Anal. Geom. \bvolume19 (\byear2011), no. \bissue2, page347–\blpage399. \endbarticle \OrigBibText K. L. Baker, Once-punctured tori and knots in lens spaces, Comm. Anal. Geom. 19 (2011), no. 2, 347–399. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsJ. A. \bsnmBaldwin, A note on genus one fibered knots in lens spaces, 2006, \arxivurlarXiv:math/0607370. \endbotherref \OrigBibText J. A. Baldwin, A note on genus one fibered knots in lens spaces, 2006.. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleHeegaard Floer homology and genus one, one-boundary component open books, \bjtitleJ. Topol. \bvolume1 (\byear2008), no. \bissue4, page963–\blpage992. \endbarticle \OrigBibText J. A. Baldwin, Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008), no. 4, 963–992. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsR. E. \bsnmBedient, \batitleDouble branched covers and pretzel knots, \bjtitlePacific J. Math. \bvolume112 (\byear1984), no. \bissue2, page265–\blpage272. \endbarticle \OrigBibText R. E. Bedient, Double branched covers and pretzel knots, Pacific J. Math. 112 (1984), no. 2, 265–272. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsJ. S. \bsnmBirman, \bauthor\binitsF. \bsnmGonzález-Acuña, and \bauthor\binitsJ. M. \bsnmMontesinos, \batitleHeegaard splittings of prime 3-manifolds are not unique, \bjtitleMichigan Math. J. \bvolume23 (\byear1976), no. \bissue2, page97–\blpage103. \endbarticle \OrigBibText J. S. Birman, F. González-Acuña, and J. M. Montesinos, Heegaard splittings of prime $3$-manifolds are not unique, Michigan Math. J. 23 (1976), no. 2, 97–103. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsJ. S. \bsnmBirman and \bauthor\binitsH. M. \bsnmHilden, \batitleHeegaard splittings of branched coverings of $S^{3}$, \bjtitleTrans. Amer. Math. Soc. \bvolume213 (\byear1975), page315–\blpage352. \endbarticle \OrigBibText J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $S\sp{3}$, Trans. Amer. Math. Soc. 213 (1975), 315–352. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsS. A. \bsnmBleiler, \bauthor\binitsC. D. \bsnmHodgson, and \bauthor\binitsJ. R. \bsnmWeeks, \bctitleCosmetic surgery on knots, \bbtitleProceedings of the Kirbyfest, \bconflocationBerkeley, CA, \bconfdate1998, \bsertitleGeom. Topol. Monogr., \bseriesno2, pp. page23–\blpage34 \bcomment(electronic), \bpublisherGeom. Topol. Publ., \blocationCoventry, \byear1999. \endbchapter \OrigBibText S. A. Bleiler, C. D. Hodgson, and J. R. Weeks, Cosmetic surgery on knots, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 23–34 (electronic). \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsJ. S. \bsnmBirman and \bauthor\binitsW. W. \bsnmMenasco, \batitleStudying links via closed braids. III. Classifying links which are closed 3-braids, \bjtitlePacific J. Math. \bvolume161 (\byear1993), no. \bissue1, page25–\blpage113. \endbarticle \OrigBibText J. S. Birman and W. W. Menasco, Studying links via closed braids. III. Classifying links which are closed $3$-braids, Pacific J. Math. 161 (1993), no. 1, 25–113. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsG. \bsnmBurde and \bauthor\binitsH. \bsnmZieschang, \batitleNeuwirthsche Knoten und Flächenabbildungen, \bjtitleAbh. Math. Semin. Univ. Hambg. \bvolume31 (\byear1967), page239–\blpage246. \endbarticle \OrigBibText G. Burde and H. Zieschang, Neuwirthsche Knoten und Flächenabbildungen, Abh. Math. Sem. Univ. Hamburg 31 (1967), 239–246. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook ––––, \bbtitleKnots, \beditionsecond edition, \bsertitlede Gruyter Stud. Math., \bseriesno5, \bpublisherWalter de Gruyter & Co., \blocationBerlin, \byear2003. \endbbook \OrigBibText G. Burde and H. Zieschang, Knots, second ed., de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsJ. H. \bsnmConway, \bctitleAn enumeration of knots and links, and some of their algebraic properties, \bbtitleComputational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. page329–\blpage358, \bpublisherPergamon, \blocationOxford, \byear1967. \endbchapter \OrigBibText J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, pp. 329–358. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsF. \bsnmGonzález-Acuña, \batitleDehn's construction on knots, \bjtitleBol. Soc. Mat. Mexicana (2) \bvolume15 (\byear1970), page58–\blpage79. \endbarticle \OrigBibText F. González-Acu na, Dehn's construction on knots, Bol. Soc. Mat Mexicana (2) 15 (1970), 58–79. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsV. K. A. M. \bsnmGugenheim, \batitlePiecewise linear isotopy and embedding of elements and spheres. I, II, \bjtitleProc. Lond. Math. Soc. (3) \bvolume3 (\byear1953), page29–\blpage53, \bcomment129–152. \endbarticle \OrigBibText V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29–53, 129–152. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsC. \bsnmHodgson and \bauthor\binitsJ. H. \bsnmRubinstein, \bctitleInvolutions and isotopies of lens spaces, \bbtitleKnot theory and manifolds, \bconflocationVancouver, BC, \bconfdate1983, \bsertitleLecture Notes in Math., \bseriesno1144, pp. page60–\blpage96, \bpublisherSpringer, \blocationBerlin, \byear1985. \endbchapter \OrigBibText C. Hodgson and J. H. Rubinstein, In Involutions and isotopies of lens spaces, Knot theory and manifolds (Vancouver, BC, 1983), Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 60–96. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsT. M. \bsnmLott, Dehn fillings of hyperbolic once-punctured torus bundles, ProQuest LLC, Ann Arbor, MI, 2009, Ph.D. thesis, Washington University in St. Louis. \endbotherref \OrigBibText T. M. Lott, Dehn fillings of hyperbolic once-punctured torus bundles, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.)–Washington University in St. Louis. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsK. \bsnmMorimoto, \batitleGenus one fibered knots in lens spaces, \bjtitleJ. Math. Soc. Japan \bvolume41 (\byear1989), no. \bissue1, page81–\blpage96. \endbarticle \OrigBibText K. Morimoto, Genus one fibered knots in lens spaces, J. Math. Soc. Japan 41 (1989), no. 1, 81–96. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsC. \bsnmMaclachlan and \bauthor\binitsA. W. \bsnmReid, \batitleGeneralised Fibonacci manifolds, \bjtitleTransform. Groups \bvolume2 (\byear1997), no. \bissue2, page165–\blpage182. \endbarticle \OrigBibText C. Maclachlan and A. W. Reid, Generalised Fibonacci manifolds, Transform. Groups 2 (1997), no. 2, 165–182. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsK. \bsnmMurasugi, \batitleOn the braid index of alternating links, \bjtitleTrans. Amer. Math. Soc. \bvolume326 (\byear1991), no. \bissue1, page237–\blpage260. \endbarticle \OrigBibText K. Murasugi, On the braid index of alternating links, Trans. Amer. Math. Soc. 326 (1991), no. 1, 237–260. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmStoimenow, \batitleThe skein polynomial of closed 3-braids, \bjtitleJ. Reine Angew. Math. \bvolume564 (\byear2003), page167–\blpage180. \endbarticle \OrigBibText A. Stoimenow, The skein polynomial of closed 3-braids, J. Reine Angew. Math. 564 (2003), 167–180. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsO. Ja. \bsnmViro, \batitleLinks, two-sheeted branching coverings and braids, \bjtitleMat. Sb. (N.S.) \bvolume87 (\byear1972), no. \bissue129, page216–\blpage228. \endbarticle \OrigBibText O. Ja. Viro, Links, two-sheeted branching coverings and braids, Mat. Sb. (N.S.) 87(129) (1972), 216–228. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsJ. R. \bsnmWeeks, SnapPea: a computer program for creating and studying hyperbolic 3-manifolds, available for free download from $\langle$\surl www.geometrygames.org$\rangle$. \endbotherref \OrigBibText J. R. Weeks, SnapPea: a computer program for creating and studying hyperbolic 3-manifolds, available for free download from www.geometrygames.org. \endOrigBibText \bptokstructpyb \endbibitem \printaddresses