The Michigan Mathematical Journal

Exotic blowup solutions for the u5 focusing wave equation in ℝ3

Roland Donninger, Min Huang, Joachim Krieger, and Wilhelm Schlag

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Michigan Math. J. Volume 63, Issue 3 (2014), 451 -501.

Dates
First available in Project Euclid: 5 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1409932630

Digital Object Identifier
doi:10.1307/mmj/1409932630

Mathematical Reviews number (MathSciNet)
MR3255688

Subjects
Primary: 35L05: Wave equation 35B40: Asymptotic behavior of solutions

Citation

Donninger, Roland; Huang, Min; Krieger, Joachim; Schlag, Wilhelm. Exotic blowup solutions for the u 5 focusing wave equation in ℝ 3 . Michigan Math. J. 63 (2014), no. 3, 451 --501. doi:10.1307/mmj/1409932630. https://projecteuclid.org/euclid.mmj/1409932630


Export citation

References

  • \beginbarticle \bauthor\binitsR. \bsnmDonninger and \bauthor\binitsJ. \bsnmKrieger, \batitleNonscattering solutions and blow up at infinity for the critical wave equation, \bjtitleMath. Ann. \bvolume357 (\byear2013), page89–\blpage163. \endbarticle \OrigBibText R. Donninger, J. Krieger Nonscattering solutions and blow up at infinity for the critical wave equation. Preprint, arXiv: 1201.3258v1, to appear in Math. Ann. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsT. \bsnmDuyckaerts, \bauthor\binitsC. \bsnmKenig, and \bauthor\binitsF. \bsnmMerle, \batitleUniversality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation, \bjtitleJ. Eur. Math. Soc. (JEMS) \bvolume13 (\byear2011), no. \bissue3, page533–\blpage599. \endbarticle \OrigBibText T. Duyckaerts, C. Kenig, F. Merle Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation. J. Eur. Math. Soc. 13 (2011), no. 3, 533–599. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleUniversality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case, \bjtitleJ. Eur. Math. Soc. (JEMS) \bvolume14 (\byear2012), no. \bissue5, page1389–\blpage1454. \endbarticle \OrigBibText T. Duyckaerts, C. Kenig, F. Merle Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1389–1454. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleProfiles of bounded radial solutions of the focusing, energy-critical wave equation, \bjtitleGeom. Funct. Anal. \bvolume22 (\byear2012), page639–\blpage698. \endbarticle \OrigBibText T. Duyckaerts, C. Kenig, F. Merle Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Preprint, arXiv:1201.4986, to appear in GAFA. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref ––––, Classification of radial solutions of the focusing, energy-critical wave equation, preprint, \arxivurlarXiv:1204.0031. \endbotherref \OrigBibText T. Duyckaerts, C. Kenig, F. Merle Classification of radial solutions of the focusing, energy-critical wave equation. Preprint, arXiv:1204.0031. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsS. \bsnmGustafson, \bauthor\binitsK. \bsnmNakanishi, and \bauthor\binitsT. \bsnmTsai, \batitleAsymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau–Lifshitz, and Schrödinger maps on $\mathbb{R}^2$, \bjtitleComm. Math. Phys. \bvolume300 (\byear2010), no. \bissue1, page205–\blpage242. \endbarticle \OrigBibText S. Gustafson, K. Nakanishi, T. Tsai Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau–Lifshitz, and Schrödinger maps on $\mathbb{R}^2$. Comm. Math. Phys. 300 (2010), no. 1, 205–242. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsM. \bsnmHillairet and \oauthor\binitsP. \bsnmRaphaël, Smooth type II blow up solutions to the four dimensional energy critical wave equation, preprint, \arxivurlarXiv:1010.1768. \endbotherref \OrigBibText M. Hillairet, P. Raphaël Smooth type II blow up solutions to the four dimensional energy critical wave equation. Preprint, arxiv:1010.1768. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsJ. \bsnmKrieger and \bauthor\binitsW. \bsnmSchlag, \batitleOn the focusing critical semi-linear wave equation, \bjtitleAmer. J. Math. \bvolume129 (\byear2007), no. \bissue3, page843–\blpage913. \endbarticle \OrigBibText J. Krieger, W. Schlag On the focusing critical semi-linear wave equation. Amer. J. Math. 129 (2007), no. 3, 843–913. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref ––––, Full range of blow up exponents for the quintic wave equation in three dimensions, preprint. \endbotherref \OrigBibText J. Krieger, W. Schlag, Full range of blow up exponents for the quintic wave equation in three dimensions. Preprint. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsJ. \bsnmKrieger, \bauthor\binitsW. \bsnmSchlag, and \bauthor\binitsD. \bsnmTataru, \batitleRenormalization and blow up for charge one equivariant critical wave maps, \bjtitleInvent. Math. \bvolume171 (\byear2008), no. \bissue3, page543–\blpage615. \endbarticle \OrigBibText J. Krieger, W. Schlag, D. Tataru Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), no. 3, 543–615. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleSlow blow-up solutions for the $H^1(\R^3)$ critical focusing semilinear wave equation, \bjtitleDuke Math. J. \bvolume147 (\byear2009), no. \bissue1, page1–\blpage53. \endbarticle \OrigBibText J. Krieger, W. Schlag, D. Tataru Slow blow-up solutions for the $H^1(\R^3)$ critical focusing semilinear wave equation. Duke Math. J. 147 (2009), no. 1, 1–53. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsY. \bsnmMartel, \oauthor\binitsF. \bsnmMerle, and \oauthor\binitsP. \bsnmRaphaël, Blow up for the critical gKdV equation III: Exotic regimes, preprint, \arxivurlarXiv:1209.2510. \endbotherref \OrigBibText Y. Martel, F. Merle, P. Raphaël Blow up for the critical gKdV equation III: Exotic regimes. Preprint, arXiv:1209.2510. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsP. \bsnmRaphaël and \bauthor\binitsI. \bsnmRodnianski, \batitleStable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems, \bjtitlePubl. Math. Inst. Hautes Études Sci. \bvolume115 (\byear2012), page1–\blpage122. \endbarticle \OrigBibText P. Raphaël, I., Rodnianski Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems. Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122. \endOrigBibText \bptokstructpyb \endbibitem \printaddresses