The Michigan Mathematical Journal

Embedded triply periodic zero mean curvature surfaces of mixed type in Lorentz-Minkowski 3-space

Shoichi Fijimori, Wayne Rossman, Masaaki Umehara, Kotaro Yamada, and Seong-Deog Yang

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 63, Issue 1 (2014), 189-207.

Dates
First available in Project Euclid: 19 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1395234364

Digital Object Identifier
doi:10.1307/mmj/1395234364

Mathematical Reviews number (MathSciNet)
MR3189473

Zentralblatt MATH identifier
1301.53056

Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]
Secondary: 53A35: Non-Euclidean differential geometry 53C50: Lorentz manifolds, manifolds with indefinite metrics

Citation

Fijimori, Shoichi; Rossman, Wayne; Umehara, Masaaki; Yamada, Kotaro; Yang, Seong-Deog. Embedded triply periodic zero mean curvature surfaces of mixed type in Lorentz-Minkowski 3-space. Michigan Math. J. 63 (2014), no. 1, 189--207. doi:10.1307/mmj/1395234364. https://projecteuclid.org/euclid.mmj/1395234364


Export citation

References

  • L. J. Alías, R. M. B. Chaves, and P. Mira, Björling problem for maximal surfaces in Lorentz–Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), 289–316.
  • S. Fujimori, Y. W. Kim, S.-E. Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara, K. Yamada, and S.-D. Yang, Zero mean curvature surfaces in $\mathbf{L}^3$ containing a light-like line, C. R. Acad. Paris, Ser. I 350 (2012), 975–978.
  • S. Fujimori, Y. W. Kim, S.-E. Koh, W. Rossman, H. Shin, M. Umehara, K. Yamada, and S.-D. Yang, Zero mean curvature surfaces in Lorentz–Minkowski 3-space which change type across a light-like line, Osaka Math. J. (to appear).
  • ––––, Zero mean curvature surfaces in Lorentz–Minkowski 3-space and 2-dimensional fluid mechanics, Math. J. Okayama Univ. (to appear).
  • S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang, New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math. 56 (2009), 41–82.
  • C. Gu, The extremal surfaces in the 3-dimensional Minkowski space, Acta. Math. Sin. 1 (1985), 173–180.
  • ––––, A global study of extremal surfaces in 3-dimensional Minkowski space, Differential geometry and differential equations (Shanghai, 1985), Lecture Notes in Math., 1255, pp. 26–33, Springer, 1987.
  • ––––, Extremal surfaces of mixed type in Minkowski space $\R^{n+1}$, Variational methods (Paris, 1988), Progr. Nonlinear Differential Equations Appl., 4, pp. 283–296, Birkhäuser, Boston, 1990.
  • Y. W. Kim, S.-E. Koh, H. Shin, and S.-D. Yang, Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae, J. Korean Math. Soc. 48 (2011), 1083–1100.
  • Y. W. Kim and S.-D. Yang, Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys. 57 (2007), no. 11, 2167–2177.
  • V. A. Klyachin, Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math. 67 (2003), 209–224.
  • O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space $\mathbb{L}^3$, Tokyo J. Math. 6 (1983), 297–309.
  • M. Ross, Schwarz' $P$ and $D$ surfaces are stable, Differential Geom. Appl. 2 (1992), 179–195.
  • V. Sergienko and V. G. Tkachev, Doubly periodic maximal surfaces with singularities, Proceedings on analysis and geometry (Russian) (Novosibirsk Akademgorodok, 1999), pp. 571–584, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000.
  • M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006), 13–40.