The Michigan Mathematical Journal

Residual intersections of Licci ideals are Glicci

Robin Hartshorne, Craig Huneke, and Bernd Ulrich

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 61, Issue 4 (2012), 675-701.

Dates
First available in Project Euclid: 16 November 2012

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1353098508

Digital Object Identifier
doi:10.1307/mmj/1353098508

Mathematical Reviews number (MathSciNet)
MR3049285

Zentralblatt MATH identifier
1262.13016

Subjects
Primary: 13C40: Linkage, complete intersections and determinantal ideals [See also 14M06, 14M10, 14M12]
Secondary: 14M06: Linkage [See also 13C40]

Citation

Hartshorne, Robin; Huneke, Craig; Ulrich, Bernd. Residual intersections of Licci ideals are Glicci. Michigan Math. J. 61 (2012), no. 4, 675--701. doi:10.1307/mmj/1353098508. https://projecteuclid.org/euclid.mmj/1353098508


Export citation

References

  • R. Apéry, Sur certains caractères numériques d'un idéal sans composant impropre, C. R. Acad. Sci. Paris 220 (1945), 234–236.
  • –––, Sur les courbes de première espèce de l'espace à trois dimensions, C. R. Acad. Sci. Paris 220 (1945), 271–272.
  • M. Artin and M. Nagata, Residual intersections in Cohen–Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307–323.
  • D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447–485.
  • R.-O. Buchweitz, Contributions à la théorie des singularités, Thesis, Université Paris VII, 1981.
  • M. Casanellas, Gorenstein liaison of 0-dimensional schemes, Manuscripta Math. 111 (2003), 265–275.
  • M. Casanellas, E. Drozd, and R. Hartshorne, Gorenstein liaison and ACM sheaves, J. Reine Angew. Math. 584 (2005), 149–171.
  • M. Casanellas and R. Miró-Roig, Gorenstein liaison of curves in ${\Bbb P}^{4},$ J. Algebra 230 (2000), 656–664.
  • –––, Gorenstein liaison of divisors on standard determinantal schemes and on rational normal scrolls, J. Pure Appl. Algebra 164 (2001), 325–343.
  • J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204.
  • F. Gaeta, Quelques progrès récents dans la classification des variétés algébriques d'un espace projectif, Deuxième colloque de la géométrie algébrique (Liège, 1952), pp. 145–183, Georges Thone, Liège / Masson & Cie, Paris, 1952.
  • E. Gorla, The G-biliaison class of symmetric determinantal schemes, J. Algebra 310 (2007), 880–902.
  • –––, Mixed ladder determinantal varieties from two-sided ladders, J. Pure Appl. Algebra 211 (2007), 433–444.
  • –––, A generalized Gaeta's theorem, Compositio Math. 144 (2008), 689–704.
  • R. Hartshorne, Generalized divisors on Gorenstein schemes, $K$-Theory 8 (1994), 287–339.
  • –––, Some examples of Gorenstein liaison in codimension three, Collect. Math. 53 (2002), 21–48.
  • –––, On Rao's theorems and the Lazarsfeld–Rao property, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), 375–393.
  • –––, Generalized divisors and biliaison, Illinois J. Math. 51 (2007), 83–98.
  • J. Herzog, A. Simis, and W. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math., 84, pp. 79–169, Dekker, New York, 1983.
  • J. Herzog, W. Vasconcelos, and R. Villarreal, Ideals with sliding depth, Nagoya Math. J. 99 (1985), 159–172.
  • C. Huneke, Linkage and Koszul homology of ideals, Amer. J. Math. 104 (1982), 1043–1062.
  • –––, Strongly Cohen–Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), 739–763.
  • C. Huneke and B. Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), 1265–1303.
  • –––, The structure of linkage, Ann. of Math. (2) 126 (1987), 277–334.
  • –––, Algebraic linkage, Duke Math. J. 56 (1988), 415–429.
  • –––, Residual intersections, J. Reine Angew. Math. 390 (1988), 1–20.
  • –––, Liaison of monomial ideals, Bull. London Math. Soc. 39 (2007), 384–392.
  • J. Kleppe, J. Migliore, R. Miró-Roig, U. Nagel, and C. Peterson, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Mem. Amer. Math. Soc. 154 (2001), no. 732.
  • A. Kustin and B. Ulrich, A family of complexes associated to an almost alternating map, with applications to residual intersections, Mem. Amer. Math. Soc. 95 (1992), no. 461.
  • J. Migliore and U. Nagel, Monomial ideals and the Gorenstein liaison class of a complete intersection, Compositio Math. 133 (2002), 25–36.
  • U. Nagel, Even liaison classes generated by Gorenstein linkage, J. Algebra 209 (1998), 543–584.
  • C. Peskine and L. Szpiro, Liaison des variétés algébriques, I, Invent. Math. 26 (1974), 271–302.
  • A. P. Rao, Liaison among curves in ${\Bbb P}^{3},$ Invent. Math. 50 (1978/79), 205–217.
  • P. Schenzel, Notes on liaison and duality, J. Math. Kyoto Univ. 22 (1982/83), 485–498.
  • B. Ulrich, On licci ideals, Contemp. Math., 88, pp. 85–94, Amer. Math. Soc., Providence, RI, 1989.
  • –––, Artin–Nagata properties and reductions of ideals, Contemp. Math., 159, pp. 373–400, Amer. Math. Soc., Providence, RI, 1994.
  • –––, Ideals having the expected reduction number, Amer. J. Math. 118 (1996), 17–38.
  • J. Watanabe, A note on Gorenstein rings of embedding codimension 3, Nagoya Math. J. 50 (1973), 227–232.