The Michigan Mathematical Journal

On volumes along subvarieties of line bundles with nonnegative Kodaira-Iitaka dimension

Gianluca Pacienza and Shigeharu Takayama

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 60, Issue 1 (2011), 35-49.

Dates
First available in Project Euclid: 31 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1301586302

Digital Object Identifier
doi:10.1307/mmj/1301586302

Mathematical Reviews number (MathSciNet)
MR2785862

Zentralblatt MATH identifier
1233.14014

Subjects
Primary: 14F18: Multiplier ideals 14C20: Divisors, linear systems, invertible sheaves 14E05: Rational and birational maps
Secondary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15]

Citation

Pacienza, Gianluca; Takayama, Shigeharu. On volumes along subvarieties of line bundles with nonnegative Kodaira-Iitaka dimension. Michigan Math. J. 60 (2011), no. 1, 35--49. doi:10.1307/mmj/1301586302. https://projecteuclid.org/euclid.mmj/1301586302


Export citation

References

  • S. Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), 1043–1063.
  • J.-P. Demailly, L. Ein, and R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137–156.
  • L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Asymptotic invariants of line bundles, Pure Appl. Math. Q. 1 (2005), 379–403.
  • –––, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701–1734.
  • –––, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607–651.
  • T. Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1–3.
  • C. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1–25.
  • S. Iitaka, On $D$-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356–373.
  • Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567–588.
  • R. Lazarsfeld, Positivity in algebraic geometry I, II, Ergeb. Math. Grenzgeb. (3), 48 and 49, Springer-Verlag, Berlin, 2004.
  • Ch. Mourougane and R. Russo, Some remarks on nef and good divisors on an algebraic variety, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 499–504.
  • N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, 14, Math. Soc. Japan, Tokyo, 2004.
  • G. Pacienza, On the uniformity of the Iitaka fibration, Math. Res. Lett. 16 (2009), 663–681.
  • S. Takayama, Iitaka's fibrations via multiplier ideals, Trans. Amer. Math. Soc. 335 (2003), 37–47.
  • –––, Seshadri constants and a criterion for bigness of pseudo-effective line bundles, Math. Z. 243 (2003), 179–199.
  • –––, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551–587.
  • G. Todorov, Effective log-Iitaka fibrations for surfaces and threefolds, Manuscripta Math. 133 (2010), 183–195.
  • H. Tsuji, Numerically trivial fibrations, math.AG/0001023.
  • –––, Pluricanonical systems of projective varieties of general type II, Osaka J. Math. 44 (2007), 723–764.
  • E. Viehweg and D.-Q. Zhang, Effective Iitaka fibrations, J. Algebraic Geom. 18 (2009), 711–730.
  • P. M. H. Wilson, On the canonical ring of algebraic varieties, Compositio Math. 43 (1981), 365–385.