The Michigan Mathematical Journal

On the divisibility of Fermat quotients

Jean Bourgain, Kevin Ford, Sergei Konyagin, and Igor Shparlinski

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 59, Issue 2 (2010), 313-328.

Dates
First available in Project Euclid: 11 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1281531459

Digital Object Identifier
doi:10.1307/mmj/1281531459

Mathematical Reviews number (MathSciNet)
MR2677624

Zentralblatt MATH identifier
1223.11116

Subjects
Primary: 11A37 11L40: Estimates on character sums 11N25: Distribution of integers with specified multiplicative constraints

Citation

Bourgain, Jean; Ford, Kevin; Konyagin, Sergei; Shparlinski, Igor. On the divisibility of Fermat quotients. Michigan Math. J. 59 (2010), no. 2, 313--328. doi:10.1307/mmj/1281531459. https://projecteuclid.org/euclid.mmj/1281531459


Export citation

References

  • S. Baier and L. Zhao, An improvement for the large sieve for square moduli, J. Number Theory 128 (2008), 154--174.
  • J. Bourgain and M.-C. Chang, Exponential sum estimates over subgroups and almost subgroups of $\Bbb Z^*_Q,$ where $Q$ is composite with few prime factors, Geom. Funct. Anal. 16 (2006), 327--366.
  • J. Bourgain, S. V. Konyagin, and I. E. Shparlinski, Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm, Internat. Math. Res. Notices (2008), 1--29.
  • ------, Corrigenda to: Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm, Internat. Math. Res. Notices (2009), 3146--3147.
  • R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), 433--449.
  • R. Ernvall and T. Metsänkylä, On the $p$-divisibility of Fermat quotients, Math. Comp. 66 (1997), 1353--1365.
  • W. L. Fouché, On the Kummer--Mirimanoff congruences, Quart. J. Math. Oxford Ser. (2) 37 (1986), 257--261.
  • A. Granville, Some conjectures related to Fermat's last theorem, Number theory (Banff, 1988), pp. 177--192, de Gruyter, New York, 1990.
  • ------, On pairs of coprime integers with no large prime factors, Exposition. Math. 9 (1991), 335--350.
  • D. R. Heath-Brown and S. V. Konyagin, New bounds for Gauss sums derived from $k$th powers, and for Heilbronn's exponential sum, Quart. J. Math. Oxford Ser. (2) 51 (2000), 221--235.
  • A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), 411--484.
  • Y. Ihara, On the Euler--Kronecker constants of global fields and primes with small norms, Algebraic geometry and number theory, Progr. Math., 850, pp. 407--451, Birkhäuser, Boston, 2006.
  • W. Keller and J. Richstein, Solutions of the congruence $a^p-1\equiv1$ $\text\rm(mod\,p^r),$ Math. Comp. 74 (2005), 927--936.
  • J. Knauerand and J. Richstein, The continuing search for Wieferich primes, Math. Comp. 74 (2005), 1559--1563.
  • S.V. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time, The mathematics of Paul Erdős, vol. I, pp. 176--198, Springer-Verlag, Berlin.
  • H. W. Lenstra, Miller's primality test, Inform. Process. Lett. 8 (1979), 86--88.
  • Y. V. Malykhin, Estimates of trigonometric sums modulo $p^r,$ Mat. Zametki 80 (2006), 793--796 (Russian); English translation in Math. Notes 80 (2006), 748--752.