The Michigan Mathematical Journal

A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications

Carlos Durán and Thomas Püttmann

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 56, Issue 2 (2008), 419-451.

Dates
First available in Project Euclid: 23 October 2008

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1224783521

Digital Object Identifier
doi:10.1307/mmj/1224783521

Mathematical Reviews number (MathSciNet)
MR2492402

Zentralblatt MATH identifier
1158.53025

Subjects
Primary: 53C22: Geodesics [See also 58E10] 57S25: Groups acting on specific manifolds
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 57S15: Compact Lie groups of differentiable transformations

Citation

Durán, Carlos; Püttmann, Thomas. A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications. Michigan Math. J. 56 (2008), no. 2, 419--451. doi:10.1307/mmj/1224783521. https://projecteuclid.org/euclid.mmj/1224783521


Export citation

References

  • U. Abresch, C. E. Durán, T. Püttmann, and A. Rigas, Wiedersehen metrics and exotic involutions of Euclidean spheres, J. Reine Angew. Math. 605 (2007), 1--21.
  • Ya. Bazaikan, A manifold with positive sectional curvature and fundamental group $\Bbb Z_3\oplus\Bbb Z_3,$ Sibersk. Mat. Zh. 40 (1999), 994--996.
  • A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin, 1978.
  • G. E. Bredon, Exotic actions on spheres, Proceedings of conference on transformation groups (New Orleans, 1967), pp. 47--76, Springer-Verlag, New York, 1968.
  • ------, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York, 1972.
  • E. Brieskorn, Beispiele zur Differentialgeometrie von Singularitäten, Invent. Math. 2 (1966), 1--14.
  • W. Browder, Free $Z_p$-actions on homotopy spheres, Topology of manifolds (Athens, 1969), pp. 217--226, Markham, Chicago, 1970.
  • J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geom. 8 (1972), 623--628.
  • C. E. Durán, Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of $\Bbb S^6,$ Geom. Dedicata 88 (2001), 199--210.
  • C. E. Durán, A. Mendoza, and A. Rigas, Blakers--Massey elements and exotic diffeomorphisms of $S^6$ and $S^14$ via geodesics, Trans. Amer. Math. Soc. 356 (2004), 5025--5043.
  • J.-H. Eschenburg and M. Kerin, Almost positive curvature on the Gromoll--Meyer sphere, Proc. Amer. Math. Sci. 136 (2008), 3263--3270.
  • D. Gromoll and W. Meyer, An exotic sphere with nonnegative curvature, Ann. of Math. (2) 100 (1974), 401--406.
  • K. Grove and K. Shankar, Rank two fundamental groups of positively curved manifolds, J. Geom. Anal. 10 (2000), 679--682.
  • K. Grove, K. Shankar, and W. Ziller, Symmetries of Eschenburg spaces and the Chern problem, Asian J. Math. 10 (2006), 647--661.
  • K. Grove, L. Verdiani, B. Wilking, and W. Ziller, Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 159--170.
  • K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. (2) 152 (2000), 331--367.
  • M. Hirsch and J. Milnor, Some curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964), 372--377.
  • F. Hirzebruch and K. H. Mayer, $\text\rm O(n)$-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer-Verlag, Berlin, 1968.
  • W.-Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1--38.
  • V. Kapovitch and W. Ziller, Biquotients with singly generated rational cohomology, Geom. Dedicata 104 (2004), 149--160.
  • T. Lance, Differentiable structures on manifolds, Surveys on surgery theory, vol. 1, Ann. of Math. Stud., 145, pp. 73--104, Princeton Univ. Press, Princeton, NJ, 2000.
  • W. S. Massey, Cross products of vectors in higher dimensional Euclidean spaces, Amer. Math. Monthly 90 (1983), 697--701.
  • J. W. Milnor, On the $3$-dimensional Brieskorn manifolds $M(p,q,r),$ Knots, groups and 3-manifolds (L. P. Neuwirth, ed.), Ann. of Math. Stud., 84, pp. 175--225, Princeton Univ. Press, Princeton, NJ, 1975.
  • P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 (1953), 458--480.
  • P. Orlik, Smooth homotopy lens spaces, Michigan Math. J. 16 (1969), 245--255.
  • G. P. Paternain and R. J. Spatzier, New examples of manifolds with completely integrable geodesic flow, Adv. Math. 108 (1994), 346--366.
  • M. G. Scharlemann and L. C. Siebenmann, The Hauptvermutung for smooth singular homeomorphisms, Topology of manifolds (Tokyo, 1973), pp. 85--91, Univ. of Tokyo Press, Tokyo, 1975.
  • L. Schwachhöfer and W. Tuschmann, Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004), 59--91.
  • K. Shankar, On the fundamental groups of positively curved manifolds, J. Differential Geom. 49 (1998), 179--182.
  • ------, Isometry groups of homogeneous spaces with positive sectional cuvature, Differential Geom. Appl. 14 (2001), 57--78.
  • E. Straume, Compact differentiable transformation groups on exotic spheres, Math. Ann. 299 (1994), 355--389.
  • B. Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002), 397--451.
  • F. Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11 (2001), 519--560.
  • K. Yamato, The spectrum of the Milnor--Gromoll--Meyer sphere, J. Math. Soc. Japan 54 (2002), 409--445.
  • C. T. Yang, On involutions of the five sphere, Topology 5 (1966), 17--19.