The Michigan Mathematical Journal

On points at infinity of real spectra of polynomial rings

Francios Lucas, Daniel Schaub, and Mark Spivakovsky

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 57 (2008), 587-599.

Dates
First available in Project Euclid: 8 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1220879425

Digital Object Identifier
doi:10.1307/mmj/1220879425

Mathematical Reviews number (MathSciNet)
MR2492469

Zentralblatt MATH identifier
1181.14059

Subjects
Primary: 14P10: Semialgebraic sets and related spaces 13F30: Valuation rings [See also 13A18]
Secondary: 06F89

Citation

Lucas, Francios; Schaub, Daniel; Spivakovsky, Mark. On points at infinity of real spectra of polynomial rings. Michigan Math. J. 57 (2008), 587--599. doi:10.1307/mmj/1220879425. https://projecteuclid.org/euclid.mmj/1220879425


Export citation

References

  • R. Baer, Uber nicht-archimedisch geordnete Körper (Beitrage zur Algebra), Sitz. Ber. der Heidelberger Akademie, 8 Abhandl, 1927.
  • J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin, 1987.
  • L. Fuchs, Teilweise geordnete algebraische Strukturen, Vandenhoeck & Ruprecht, Göttingen, 1966.
  • I. Kaplansky, Maximal fields with valuations I, Duke Math. J. 9 (1942), 303--321.
  • ------, Maximal fields with valuations II, Duke Math. J. 12 (1945), 243--248.
  • W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160--196.
  • F. Lucas, J. J. Madden, D. Schaub, and M. Spivakovsky, On connectedness of sets in the real spectra of polynomial rings, preprint, arXiv AG/0601671.
  • A. Prestel, Lectures on formally real fields, Lecture Notes in Math., 1093, Springer-Verlag, Berlin, 1984.
  • S. Priess-Crampe, Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen, Springer-Verlag, Berlin, 1983.
  • O. Zariski and P. Samuel, Commutative algebra, vol. II, Springer-Verlag, Berlin, 1960.