The Michigan Mathematical Journal

Modular invariants for lattice polarized K3 surfaces

Adrian Clingher and Charles Doran

Full-text: Open access

Article information

Michigan Math. J., Volume 55, Issue 2 (2007), 355-393.

First available in Project Euclid: 20 August 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14J28: $K3$ surfaces and Enriques surfaces 14J27: Elliptic surfaces 14J81: Relationships with physics


Clingher, Adrian; Doran, Charles. Modular invariants for lattice polarized K3 surfaces. Michigan Math. J. 55 (2007), no. 2, 355--393. doi:10.1307/mmj/1187646999.

Export citation


  • P. Aspinwall and D. Morrison, Point-like instantons in K3 orbifolds, Nuclear Phys. B 503 (1997), 533--564.
  • W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact complex surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 2004.
  • M. Billo, F. Denef, P. Fre, I. Pesando, W. Troost, A. Van Proeyen, and D. Zanon, The rigid limit in special Kahler geometry, Classical Quantum Gravity 15 (1998) 2083--2152.
  • C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 2004.
  • P. Candelas and H. Skarke, F-theory, $\text\rm SO(32)$ and toric geometry, Phys. Lett. B 413 (1997), 63--69.
  • G. L. Cardoso, G. Curio, D. Lust, and T. Mohaupt, On the duality between the heterotic string and $F$-theory in 8 dimensions, Phys. Lett. B 389 (1996), 479--484.
  • J. W. Cassels and E. W. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge Univ. Press, Cambridge, 1996.
  • A. Clingher, Heterotic string data and theta functions, Adv. Theor. Math. Phys. 9 (2005), 173--252.
  • A. Clingher and C. Doran, On K3 surfaces with large complex structure, Adv. Math. 215 (2007).
  • A. Clingher and J. W. Morgan, Mathematics underlying the F-theory/heterotic duality in eight dimensions, Comm. Math. Phys. 254 (2005), 513--563.
  • I. V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. (New York) 81 (1996), 2599--2630.
  • R. Friedman and J. W. Morgan, Smooth four-manifolds and complex surfaces, Ergeb. Math. Grenzgeb. (3), 37, Springer-Verlag, Berlin, 1984.
  • R. Friedman, J. W. Morgan, and E. Witten, Vector bundles and F-theory, Comm. Math. Phys. 187 (1997), 679--743.
  • ------, Principal G-bundles over elliptic curves, Math. Res. Lett. 5 (1998), 97--118.
  • S. Hosono, B. Lian, K. Oguiso, and S.-T. Yau, $c=2$ rational toroidal conformal field theories via the Gauss product, Comm. Math. Phys. 241 (2003), 245--286.
  • ------, Kummer structures on a K3 surface: An old question of T. Shioda, Duke Math. J. 120 (2003), 635--647.
  • H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), pp. 495--502, Kinokuniya, Tokyo, 1978.
  • H. Inose and T. Shioda, On singular K3 surfaces, Complex analysis and algebraic geometry, pp. 119--136, Iwanami Shoten, Tokyo, 1977.
  • K. Kodaira, On compact analytic surfaces, Analytic functions, pp. 121--135, Princeton Univ. Press, Princeton, NJ, 1960.
  • ------, On compact analytic surfaces, II, Ann. of Math. (2) 77 (1963), 563--626.
  • S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), 75--98.
  • A. Kumar, Personal communication, February 2006.
  • A. Mayer, Families of K3 surfaces, Nagoya Math. J. 48 (1972), 1--17.
  • D. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105--121.
  • D. Morrison and C. Vafa, Compactifications of F-theory on Calabi--Yau threefolds, II, Nuclear Phys. B 476 (1996), 437--469.
  • V. Nikulin, Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 278--293.
  • ------, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980), 103--167.
  • ------, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc. 38 (1980), 71--135.
  • K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan 41 (1989), 651--680.
  • I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli's theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530--572.
  • W. Ruppert, When is an Abelian surface isomorphic or isogenous to a product of elliptic curves? Math. Z. 203 (1990), 293--299.
  • A. Sen, F-Theory and orientifolds, Nuclear Phys. B 475 (1996), 562--578.
  • T. Shioda, On the Mordell--Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), 211--240.
  • J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Math., 476, pp. 33--52, Springer-Verlag, Berlin, 1975.
  • C. Vafa, Evidence for F-Theory, Nuclear Phys. B 469 (1996), 403--415.
  • D. Q. Zhang, Quotients of K3 surfaces modulo involutions, Japan. J. Math. 24 (1998), 335--366.